DETECCIÓN DEL POLIMORFISMO DEL GEN GSTM1 EN MUCOSA ORAL SANA EN MAYORES DE 40 AÑOS

Trabajo de investigación para optar al título de Cirujano Dentista

Alumnos:
Licenciada Valentina Moreno Madrid
Licenciado Sergio Vicuña Avilés

Tutor principal:
Dra. Alejandra Fernández Moraga

VIÑA DEL MAR – CHILE
DICIEMBRE – 2016
AGRADECIMIENTOS

Agradecemos principalmente a nuestras tutoras, Dra. Alejandra Fernández y Dra. Carolina Somarriva, por su apoyo, guía, conocimientos, disposición y sobretodo paciencia durante el desarrollo de este proyecto.

También, queremos agradecer a Ekatherine Núñez, Mauricio Bittner, Luis Quiñones y Pamela Machuca por su gran ayuda y colaboración en esta investigación, la cual no habría sido posible sin ellos.

Además, a Dr. Alfredo Cueto por su motivación y orientación en los puntos más cruciales de nuestra tesis.

Por último, queremos agradecer a todas las personas que facilitaron el proceso de toma de muestras en las dependencias de la Clínica Odontológica de la Universidad Andrés Bello, sede Santiago y Viña del Mar.
ANEXO 1 .. 73
ANEXO 2 .. 75
ANEXO 3 .. 77
GLOSARIO

ADN: Ácido desoxirribonucleico.

Carcinógeno: Agente físico, químico o biológico potencialmente capaz de producir cáncer al exponerse a tejidos vivos.

Enzima: Proteína soluble producida por las células del organismo, que favorece y regula las reacciones químicas en los seres vivos.

Isoenzimas: Proteínas con diferente estructura, pero que catalizan la misma reacción.

Enzima citósólica: Enzima que realiza su actividad enzimática en el citosol celular.

Citocromo P450: Enzima oxidasa terminal del sistema de la Monooxigenasa que participa en la biotransformación de sustancias tales como los xenobióticos (medicamentos, plaguicidas y otros contaminantes). Es una de las enzimas participantes de la fase I de la metabolización de estas sustancias.

Monooxigenasa-Citocromo P450 (CYP1A1): También conocido como “sistema de la Monooxigenasa dependiente del Citocromo P450”. Participa en la cadena de transporte de electrones. Dentro de sus componentes está el Citocromo P450.

Glutatión S-Transferasa (GST): Familia de enzimas que catalizan la conjugación del glutatión endógeno a una variedad de compuestos electrofílicos, protegiendo las macromoléculas biológicas como las proteínas y
los ácidos nucleicos de las consecuencias tóxicas de una reacción covalente con agentes nocivos.

Glutatión S-Transferasa mu 1 (GSTM1): Enzima que forma parte de las 5 isoenzimas de la clase mu de la familia citosólica GST. Esta enzima participa en la fase II de la metabolización de los xenobióticos.

Polimorfismo: Hace referencia a la existencia en una población de múltiples alelos de un gen, una variación en la secuencia de un lugar determinado del ADN entre los individuos de una población. Para fines de este trabajo, el polimorfismo será considerado como la ausencia de un gen.

Biomarcador: También llamado marcador biológico. Es aquella sustancia utilizada como indicador de un estado biológico para diagnóstico y/o pronóstico.

Especies Reactivas del Oxígeno (EROs): Moléculas altamente reactivas debido a la presencia de una capa de electrones de valencia no pareada.

Estrés oxidativo: Desequilibrio entre la producción de especies reactivas del oxígeno y la capacidad de un sistema biológico de detoxificar rápidamente los reactivos intermedios o reparar el daño resultante.

Deleción homocigota: Anomalía estructural cromosómica que consiste en la pérdida de un fragmento de ADN de un cromosoma que no abarca al centrómero. Al no poseer centrómero, esta secuencia se perderá durante la división celular y las células descendientes tendrán menos material genético.
Citología exfoliativa: Estudio citológico de las células exfoliadas de un órgano en comunicación con el exterior o fácilmente accesible.

Técnica de la Reacción en cadena de la Polimerasa (PCR): Conocida como PCR por sus siglas en inglés (“Polymerase Chain Reaction”), es una técnica de biología molecular cuyo objetivo es obtener un gran número de copias de un fragmento de ADN particular.
I. RESUMEN

El carcinoma oral de células escamosas (COCE) es el cáncer más común que se desarrolla en la cavidad oral. Esta patología afecta principalmente a mayores de 40 años y más a hombres que mujeres, en una relación 2:1.

El consumo de tabaco y alcohol son hábitos que se consideran factores de riesgo para desarrollar el COCE. El cigarrillo tiene 11 agentes carcinógenos comprobados, cuyos niveles en la sangre son metabolizados por enzimas pertenecientes a la familia de las Glutation S-Transferasa, presentando la GSTM1 una función principal en la desintoxicación de estos compuestos. Existe evidencia científica que relaciona el polimorfismo del gen que codifica para la enzima GSTM1 con una mayor susceptibilidad para desarrollar cáncer oral.

El objetivo de este estudio fue determinar la frecuencia del polimorfismo del gen GSTM1 en mucosa lingual normal en mayores de 40 años mediante técnica de citología exfoliativa y, junto a esto, describir la muestra de estudio según edad, género, hábito de tabaco, hábito de alcohólico e historia de cáncer en familia para así finalmente poder establecer si existe o no relación entre el polimorfismo del gen GSTM1 y los factores incluidos en el estudio.

Para esto, se estudiaron 90 pacientes sin lesiones a nivel oral que acudieron entre los meses Julio y Octubre 2016 a las dependencias de las Clínicas Odontológicas de la Universidad Andrés Bello, sede Santiago y Viña del Mar. Se les tomó muestras de ambos bordes laterales de la lengua mediante citología
exfoliativa y éstas fueron procesadas con técnica de PCR para el análisis del polimorfismo del gen GSTM1.

El polimorfismo del gen GSTM1 fue encontrado en 29 pacientes, correspondiendo al 32,22% de la muestra. No se encontraron relaciones estadísticamente significativas entre la presencia de GSTM1 nulo y las variables analizadas. Esto se explica debido a que el polimorfismo se ha encontrado fuertemente ligado a la etnia de los individuos, siendo más frecuente en asiáticos, africanos e indios, y que en Chile la población es considerada altamente mestiza, por lo que la presencia del polimorfismo del gen GSTM1 podría variar al considerar diferentes zonas geográficas del país.
II. INTRODUCCIÓN

La carcinogénesis química es el proceso por el cual se desarrolla un cáncer. Los factores etiológicos de la carcinogénesis química son las sustancias químicas y se clasifican en 2 grupos: las de acción directa y las de acción indirecta (1).

Las de acción directa no requieren conversión metabólica para hacerse cancerígeno. Las de acción indirecta requieren una conversión metabólica a un carcinógeno final antes de hacerse activos (1), tal y como sucede con los productos obtenidos de la combustión del cigarrillo, donde se generan más de 30 carcinógenos entre los que destacan las nitrosaminas específicas, hidrocarburos poliaromáticos y aminas aromáticas (2).

La sustancia carcinógenas son metabolizadas por enzimas, principalmente por la familia de la Glutatión S-Transferasa (GST), que incluye al subtipo Glutatión S-Transferasa mu1 (GSTM1). Sin embargo, la enzima GSTM1 puede presentar en su estado genómico delección homocigota, conocido como polimorfismo, suprimiendo su actividad funcional (2, 3).

Puesto que la enzima GSTM1 es esencial para la metabolización y eliminación de carcinógenos, la susceptibilidad al desarrollo de cáncer oral está regulada en parte por polimorfismos en los genes que codifican esta enzima. Actualmente, se considera a la GSTM1 como un indicador de riesgo de carcinoma oral de células escamosas (COCE) (4).
El COCE es la neoplasia más frecuente de la cavidad oral. Presenta una prevalencia de un 95% y una tasa de mortalidad de un 50% a los 5 años. El sitio anatómico más afectado es el borde lateral de la lengua y afecta principalmente a mayores de 40 años (5). Los principales factores etiológicos asociados a la etiología de COCE son el consumo de tabaco y alcohol (6).

Por ello, la finalidad de este estudio será caracterizar la frecuencia del polimorfismo de GSTM1 en mayores de 40 años en los centros odontológicos de la Facultad de Odontología de la Universidad Andrés Bello, sede Santiago y Viña del Mar, mediante el análisis genético de la presencia de polimorfismo de GSTM1 detectado por la técnica de la reacción en cadena de polimerasa (PCR, por sus siglas en inglés) en muestras obtenidas a través de citología exfoliativa de mucosa oral sana (7) desde los bordes laterales de la lengua, debido a su constante contacto con agentes carcinógenos, a ser un tejido no queratinizado y presentar un epitelio más delgado que en otros sectores de la mucosa oral.

A pesar de que la literatura médica indica que el gen presenta asociación con el desarrollo de cáncer oral (2, 3, 4, 7, 17, 24, 29, 33, 37), actualmente en Chile no existen estudios que den cuenta de la presencia del polimorfismo del gen en la mucosa de la lengua de pacientes sanos detectado por citología exfoliativa, por lo que este estudio contribuye al registro de información epidemiológica que podrá ser utilizada como base de investigaciones posteriores.
III. MARCO TEÓRICO

1. Sustancias nocivas y su relación con la mucosa oral

La mucosa oral está constantemente expuesta a diversas sustancias nocivas y tóxicas, dentro de las que se encuentran las Especies Reactivas del Oxígeno (EROs) y los agentes carcinógenos.

Los EROs son radicales libres derivados del oxígeno, las cuales se producen en condiciones normales en las células durante la respiración mitocondrial y la producción de energía, sin embargo, son degradadas y eliminadas por los sistemas defensivos celulares. Por lo tanto, las células mantienen una situación de equilibrio donde pueden existir radicales libres de forma transitoria en concentraciones bajas sin provocar lesiones. Cuando la producción de EROs aumenta o los sistemas de limpieza son ineficaces, se produce un exceso de radicales libres y ocurre lo que se llama estrés oxidativo. El estrés oxidativo se ha relacionado con múltiples procesos, tales como lesión celular, cáncer, envejecimiento y algunos procesos degenerativos (como la enfermedad de Alzheimer). Los EROs se producen también en inflamación, especialmente por parte de neutrófilos y macrófagos como mediadores para la destrucción de microbios, tejidos muertos y otras sustancias indeseadas. Como efecto patológico, los EROs pueden causar lesiones de forma directa en los lípidos, proteínas y ácido desoxirribonucléico (ADN) (1).
Los EROs, en condiciones fisiológicas, son removidos de las células por sistemas antioxidantes, los que incluyen ciertas enzimas como la superoxidismutasa, catalasa y el sistema del glutatión, junto con algunas macromoléculas de naturaleza no enzimática como ceruloplasmina y transferrina, así como también un conjunto de moléculas de bajo peso: glutatión, metionina, vitaminas C y E. El desbalance entre la producción de las especies reactivas y la concentración y/o actividad de las defensas antioxidantes puede generar estrés oxidativo, situación en la cual las especies radicales reaccionan y modifican estructuras biológicas, generando así daño tisular (11).

Los radicales libres provocan lesiones celulares y muerte mediante necrosis. Esto se sabe ya que la producción de los EROs es un signo que suele anteceder a la necrosis, pero no está claro si pueden inducir también la apoptosis celular. Los efectos patológicos de los EROs y otros radicales libres son múltiples, pero existen tres reacciones de especial importancia para las lesiones celulares (1):

1. Peroxidación lipídica de las membranas: consiste en la peroxidación de los lípidos de las membranas plasmáticas y de los organelos por parte de los radicales libres derivados del oxígeno y, especialmente, por el OH. Las interacciones entre los radicales y los lípidos van a generar peróxidos, los que son inestables y reactivos y se producirá una reacción autocatalítica, llamada “propagación”, que puede determinar extensas lesiones de la membrana (1).
2. Modificación oxidativa de las proteínas: los radicales libres inducen a la oxidación de las cadenas laterales de los aminoácidos, la formación de enlaces cruzados entre las proteínas y la oxidación del esqueleto de las proteínas. La modificación oxidativa de las proteínas puede generar lesiones en sitios activos de las enzimas, alterar la forma de las proteínas estructurales y fomentar la degradación de las proteínas desplegadas o mal plegadas en los proteosomas (1).

3. Finalmente, las lesiones en el ADN es el tercer tipo de reacción que pueden generar los EROs. Los radicales libres pueden producir rupturas en una o en ambas hebras del ADN, generando enlaces cruzados en sus hebras y formando aductos. Estas lesiones oxidativas en el ADN se han relacionado con el envejecimiento celular y la transformación maligna de las células (1).

Por otro lado, los carcinógenos son otro tipo de sustancias a las cuales está constantemente expuesta la mucosa oral. Éstos, según la Agencia Internacional para la Investigación del Cáncer (IARC, por sus siglas en inglés), son definidos como aquellos capaces de producir un incremento en la incidencia de neoplasias malignas, ya sea reduciendo su tiempo de latencia o incrementando su gravedad o capacidad de multiplicación; pudiendo ser tanto un agente físico, químico o biológico potencialmente capaz de producir cáncer al exponerse a tejidos vivos (12).
El consumo de tabaco y alcohol ha sido ampliamente estudiado por ser sustancias potencialmente carcinógenas debido a su alto contenido en compuestos nocivos. En el tabaco se encuentran más de 30 carcinógenos, dentro de los cuales se destacan 3 clases de agentes: las Nitrosaminas Específicas del Tabaco (TSNAs), los Hidrocarburos Poliaromáticos (PAHs) y las aminas aromáticas (2). Por otro lado, en las bebidas alcohólicas están presentes distintos compuestos dañinos, siendo el etanol el principal determinante en aumentar el riesgo de desarrollo de cáncer junto con el Acetaldehído, el cual es considerado otro factor de riesgo, debido a su alta carcinogenicidad (13). Los compuestos orgánicos como hidrocarburos policíclicos aromáticos (dimetil-benzantraceno, benzopireno, 3.metilcolantreno) y ciertos metales (Ni, Cd, Co, Pb, Be) tienen un efecto directo mediante uniones covalentes a los ácidos nucleicos (14).

El metabolismo de los compuestos dañinos para el cuerpo (o compuestos exógenos) es realizado por las enzimas de biotransformación y usualmente consta de dos etapas distintas comúnmente referidas como la fase I y la fase II. El metabolismo de la fase I implica una oxidación inicial, reducción e hidrólisis del xenobiótico por la Monooxigenasa-Citocromo P450 (CYP1A1), paso que es seguido por el metabolismo de fase II, el cual frecuentemente significa reacciones de conjugación catalizadas por las Glutatión-S-transferasas, UDP-glucoronosil transferasas y sulfotransferasas, o bien por reacciones de reducción catalizadas por la epóxido-hidrolasa y quinona reductasa. Por otra parte, la protección contra las especies reactivas del oxígeno y los productos de descomposición de lípidos
peroxidados y ADN oxidado está dada por las superóxido dismutasas, catalasas, glutatión peroxidasa, GSTs, reductasas de aldosa-cetona y enzimas de reparación de ADN (15, 16). Las enzimas de fase II, Glutatión-S-Transferasa, juegan un rol en la detoxificación de compuestos electrofílicos formados por las enzimas de fase I como las CYP-Citocromo P450. Por lo tanto, los efectos tóxicos de la exposición, absorción y detoxificación de carcinógenos depende de un balance delicado entre las enzimas de fase I y fase II (17).

Fig. 1. Esquema de la interacción entre un procarcinógeno del humo del tabaco y las enzimas metabólicas de la fase I y II en la iniciación del cáncer. HAP: hidrocarburos aromáticos policíclicos; CYP1A1: citocromo P450 1A1; GST: glutatión S-transferasa (16).
2. Familia de la glutation S-transferasa (GSTs)

Las Glutation S-transferasas (GSTs) son una familia multi-genética de enzimas de proteínas diméricas metabólicas de fase II, esto porque muchos de los compuestos que inducen a las GSTs son por sí mismos sustratos de estas enzimas, o bien, son metabolizados por las Monooxigenasa-Citocromo P-450 a compuestos que pueden servir como sustratos para las GSTs (15). Las GSTs son pequeñas, de aproximadamente 25 kDa por subunidad, con un sitio activo para la unión de su monómero llamado glutatión. La unión generada entre las GSTs y su monomero es fuerte y de tipo puente de Hidrógeno (15, 18). Las formas cistólicas y las formas unidas membrana de la Glutatión S-Transferasa son codificadas por dos familias de supergenes distintas, existiendo clases diferentes: alpha (GSTA), beta (GSTB), delta (GSTD), epsiolon (GSTE), omega (GSTO), zeta (GSTZ), mu (GSTM), nu (GSTN), pi (GSTP), sigma (GSTS), tau (GSTT), phi, theta y kappa. Estas van a exponer distintas propiedades de uniones catalíticas y no catalíticas, diferenciándose tanto en secuencia como en propiedades inmunológicas y papel fisiológico. En humanos se pueden encontrar las isoenzimas cistólicas de las GSTs en las clases alpha, zeta, theta, mu, pi, sigma y omega (15, 19).

La conjugación de glutatión reducido es catalizada por las enzimas GST con una variedad de compuestos electrofílicos endógenos y exógenos que incluyen muchas toxinas potencialmente carcinógenas y drogas quimioterapéuticas (3, 20). Estas van a catalizar el ataque nucleofílico del sustrato fisiológico, glutatión reducido o GSH (g-Glu-Cys-Gly) sobre el centro electrófilo de
un gran número de estructuras tóxicas, para ser más tarde excretadas por la orina o la bilis (17).

Las isoenzimas de las GSTs presentan una amplia especificidad a los sustratos y tanto la exhibición de sus actividades catalíticas como su capacidad de secuestrar drogas y hormonas que no son sus sustratos es poco frecuente. Estas enzimas van a tener, en distintas especies, un nivel de expresión que puede ser significativamente aumentado por la exposición a compuestos externos, lo que sugiere que forman parte de una respuesta adaptativa al estrés químico. A pesar de esto, mientras la inducción de las GSTs no es inusual, se debe remarcar que estas parecen contribuir de manera clave en este mecanismo de respuesta adaptativa, siempre que los agentes inductores sean sustratos de las GSTs o metabolizados por la CYP para convertirse en este tipo de sustratos. Por esto, es probable que las GSTs modulen la inducción de otras enzimas, tales como alfatoxina B y aldeído reductasa a través de su habilidad de metabolizar agentes inductores. Tanto los sustratos de GSTs como los conjugados de glutatión parecieran poseer la habilidad de inducir una gran variedad de proteínas (15).

Es probable que un número de enzimas metabolizantes de la fase II estén reguladas por sustratos de las GSTs, mientras que ciertas proteínas dependientes de glutatión y enzimas involucradas en la homeostasis del glutatión pueden ser reguladas por conjugados del glutatión. La probabilidad de que las GSTs pudieran
modular la expresión de otras enzimas que metabolizan ciertas drogas sugiere que la población de polimorfismos de las GSTs, variaciones en animales y diferencias de especies van a influir en otros mecanismos de defensa química (15).

3. **Familia de la Glutatión S-Transferasa M (GSTM)**

La clase mu de las enzimas GSTs participan en la detoxificación de compuestos electrolíticos incluyendo carcinógenos, drogas terapéuticas, toxinas ambientales y productos del estrés oxidativo por conjugación con el glutatión (21).

Estas enzimas catalizan las reacciones de conjugación entre éste y los sustratos carcinógenos para facilitar su excreción (3), llevándose a cabo el primer paso en un proceso de desintoxicación. Estas enzimas al desintoxicar darán metabolitos hidrofílicos excretables, por lo que su falta podría potencialmente aumentar la susceptibilidad a varios cánceres por la disminución de la capacidad de desintoxicar carcinógenos (17).

Dentro de la clase mu de las GSTs, existen 5 tipos distintos de enzimas: Glutatión S-transferasa mu1 (GSTM1), Glutatión S-transferasa mu2 (GSTM2), Glutatión S-transferasa mu3 (GSTM3), Glutatión S-transferasa mu4 (GSTM4) y Glutatión S-transferasa mu5 (GSTM5), siendo la GSTM1 conocida por tener una alta frecuencia de polimorfismo en el genoma humano (22).
La GSTM1 es parte de la clase mu de la familia citosólica GST. El gen que codifica para la GSTM1 está situado en el cromosoma 1p13.3 (23). Se han descrito 3 alelos en el locus de GSTM1: GSTM1*0, GSTM1*A, GSTM1*B, siendo los alelos *A y *B activos y el alelo *0 inactivo. Éste último no producirá ninguna enzima debido a que presenta una deleción homocigota (24, 25), la cual se define como las mutaciones por deleción que representan la pérdida de un segmento del cromosoma que no abarca al centrómero. Al no poseer centrómero esta secuencia se perderá durante la división celular y las células descendientes tendrán menos material genético (26) y, cuando ambos alelos tienen el mismo número de repeticiones, se denomina homocigoto (27).

Los alelos GSTM1*A y GSTM1*B van a codificar para la proteína GSTM1 A y GSTM1 B, las cuales son funcionalmente idénticas y difieren únicamente en un aminoácido. La GSTM1 A contiene lisina en la posición número 172 y la B contiene asparagina en esta misma posición. Los productos de estos dos genes se combinan con el otro para formar enzimas activas homo- y hetero-diméricas (25).
4. **Polimorfismo de la Glutatión S-Transferasa M (GSTM)**

Los sustratos de GST Mu incluyen numerosos epóxidos de hidrocarburos aromáticos, los que están presentes en el humo del tabaco y que podría llevar a la formación de aductos estables de ADN y así gatillar etapas tempranas de la carcinogénesis (28). Así, la ausencia de la enzima GSTM1 podría afectar la variabilidad individual en el metabolismo de sustancias químicas y, finalmente, afectar la susceptibilidad a desarrollar un cáncer, incluso aumentando el riesgo de aparición de cáncer oral (29), ya que también se relacionan con la detoxificación de hidrocarburos aromáticos policíclicos y benzopirenos, presentes en el humo del tabaco, altamente carcinógeno (3).

La enzima GSTM1 es una de las expresiones de los 5 genes de la clase μ situados en tándem en el cromosoma 1, y aunque cada gen tiene su sustrato específico, puede existir cierta coincidencia con lo que la deficiencia de una de ellas puede ser compensada por la expresión de los otros genes. Aproximadamente el 50% de la población caucásica hereda 2 alelos con el gen GSTM1 delecionado y por tanto carecen de actividad GSTM1, hecho que es considerado polimorfismo (30).

El polimorfismo corresponde a una variación en la secuencia del ADN entre los individuos de una población. Los cambios poco frecuentes en las secuencias de bases nitrogenadas del ADN se denominan mutaciones. Para que esta
La variación se considere polimorfismo, debe estar presente al menos en 1% de la población (31).

Las delecciones homocigotas de los genes GSTM1 son comunes, son polimorfos y resultan en una pérdida total de la actividad enzimática. Estas delecciones también están presentes en los genes de la enzima Glutation S-transferasa tau-1 (GSTT1), siendo entonces las variantes Mu1 y Tau1 de las GST donde el gen está ausente de manera homocigota. Estas serán conocidas como “gen nulo”. La frecuencia de los alelos nulos de GSTM1 se ven según variaciones raciales y étnicas, siendo mayores en europeos (42-60%) y asiáticos (41-63%) (20).

Se ha visto que los cánceres de la cavidad oral están más influenciados por delecciones de GSTM1 y GSTT1 (3). Estas delecciones contribuyen a la carcinogénesis, considerado como un proceso de múltiples pasos tanto a nivel fenotípico como genotípico, resultante de la acumulación de mutaciones múltiples (1) y a la progresión de los tumores de cabeza y cuello (3, 32). Al respecto Shukla (2013) reportó que el genotipo nulo de GSTM1 está asociado con una supervivencia menor en pacientes con carcinoma oral escamoso comparado con aquellos pacientes con el genotipo presente (17). Masood y cols., describieron una asociación positiva de un 84% entre el genotipo nulo de la GSTM1 con cánceres de cabeza y cuello en un 64% de todos los estudios analizados (3).
Por lo demás, no sólo existe una asociación entre el genotipo nulo de GSTM1 y el riesgo aumentado de recurrencia de carcinoma escamoso oral, sino que también con el estadío IV del cáncer y una menor supervivencia a éste (17). En el estadío IV ya se habla de una diseminación del cáncer a partes distantes del cuerpo, tal y como lo indica el Instituto Nacional de Cáncer de EE.UU.

Además, los polimorfismos de ciertas enzimas GST también pueden alterar el metabolismo de drogas quimioterapéuticas y modificar la efectividad de la terapia de manera negativa, por lo que se puede predecir diferencias en el resultado de tratamiento de cáncer de varios sitios, como los cánceres de mama, leucemias, colo-rectal y oral (17). Un ejemplo de esto es la correlación entre el genotipo de GSTM1 con la supervivencia de pacientes tratados de cáncer oral, la cual puede ser explicada por las diferencias en la detoxificación de agentes de tratamiento o por las diferencias del daño carcinógeno al ADN observado en el estudio de Shukla, el cual demostró que los pacientes con genotipo GSTM1 nulo tenían una habilidad reducida para la detoxificación mediada por estas enzimas (17).
5. **Detección del Polimorfismo del gen GSTM1 en mucosa oral**

La enzima GSTM1 es considerada un biomarcador genético de susceptibilidad de cáncer oral (4). Por ello, puede ser posible valorar el riesgo de cáncer oral en individuos sanos mediante el análisis genético de la presencia de polimorfismo de GSTM1 detectado por técnica de la reacción en cadena de la polimerasa (PCR, por sus siglas en inglés) en muestras obtenidas desde la sangre, saliva, biopsia o citología exfoliativa de la mucosa oral (7). A través de esta técnica se busca evidenciar la presencia del gen GSTM1 mutado en pacientes sanos.

Hasta la fecha, la mayoría de los biomarcadores se han identificado a partir de diversos fluidos corporales, siendo la sangre y la saliva los más estudiados ya que pueden contener marcadores biológicos fiables para la detección de cáncer. La saliva es un fluido corporal informativo que contiene una matriz de proteínas de ácido ribonucleico mensajero (ARNm) y ADN, los que pueden ser utilizados como biomarcadores para la traducción y para aplicaciones clínicas.

El punto más importante para la selección de la saliva como herramienta de diagnóstico es que contiene las células descamadas de la cavidad oral y sus productos (como las microvesículas), lo que permite que sea una opción para la detección e identificación de potenciales biomarcadores de diagnóstico para cáncer oral (33).
El primer informe de la saliva como una herramienta de diagnóstico para la detección del cáncer oral fue publicado en el año 2000 por Liao y cols. y en el año 2011, en “A Review on Salivary Genomics and Proteomics Biomarkers in Oral Cancer”, realizado por Shah y cols., donde analizaron el papel del polimorfismo de los genes CYP1A1, GSTT1 y GSTM1 presentes en la saliva para evaluar sus roles como marcadores de susceptibilidad de cáncer oral. Los resultados de esta revisión sobre el análisis del gen GSTM1 en saliva demostraron que 36% de los controles y 36% de los casos presentaban GSTM1 genotipo nulo, concordando con un estudio realizado anteriormente por los mismos autores, pero basados en análisis de sangre. Finalmente el análisis de la saliva sobre GSTT1 mostró que la frecuencia del genotipo GSTT1 nulo fue del 24% en los casos de cáncer oral y de 16% en los controles, sugiriendo así que los individuos con el genotipo nulo pueden ser más susceptibles a desarrollar cáncer oral (4).

Otra forma de examinar el polimorfismo del gen de la enzima GSTM1 es aislando el ADN genómico total de sangre periférica y luego utilizar la amplificación por PCR y posterior digestión con enzimas de restricción (34).

Existe también la posibilidad de detectar el polimorfismo de la GSTM1 mediante muestras obtenidas por medio de una biopsia, la que se define como el procedimiento en el que se remueve tejido de un organismo vivo para examen
macro y microscópico y así establecer un diagnóstico. La toma de la muestra debe contar con un tejido representativo en cantidad y en condiciones adecuadas. Existen muestras que por la naturaleza del examen a realizar no deben fijarse y tienen que ser enviadas en fresco al laboratorio para su posterior análisis y otras que son fijadas mediante líquidos especiales (27).

Debido a la posibilidad de combinar técnicas de obtención de muestras para la detección del polimorfismo de GSTM1, J. Nair y cols. realizaron un estudio de casos y controles llamado “Glutathione S-transferase M1 and T1 null genotypes as risk factors for oral leukoplakia in ethnic Indian betel quid/tobacco chewers”, en el que se realizó citología exfoliativa a 82 pacientes sanos (controles) y toma de biopsia a 98 pacientes que presentaban leucoplasia oral (casos), las que fueron fijadas con formaldehído y embebidas en bloques de parafina. Luego el ADN genómico fue extraído usando un método estándar y los polimorfismos homocigotos nulos de GSTM1 y GSTT1 se determinaron utilizando PCR múltiple modificado para la aplicación simultánea de ambos genes para el análisis molecular. En el estudio se obtuvo que GSTM1 activo estuvo presente en el 83% y el GSTT1 activo estuvo presente en el 78% de todos los sujetos de control, mientras que la prevalencia de GSTM1 y GSTT1 con genotipos nulos fue significativamente mayor entre los casos de leucoplasia oral. La prevalencia de GSTM1 nulo en casos de leucoplasia era del 81,6% en comparación con el 17% de los controles y GSTT1 nulo fue de 75,5% en los casos frente a 22% en los controles (35).
Por otra parte, la citología exfoliativa oral es también una herramienta utilizada para la detección del gen, la cual consiste en el estudio e interpretación de los caracteres de las células que se descaman de manera natural o artificial de la mucosa oral. Generalmente se emplea esta técnica con el fin de observar al microscopio la morfología de las células epiteliales superficiales después de su toma, fijación y tinción. No obstante, también se puede emplear para el estudio molecular del material genético. Es una técnica rápida, sencilla, de bajo costo, no agresiva ni invasiva, relativamente indolora y bien aceptada por los pacientes, por lo que podría ser útil en el diagnóstico precoz del cáncer oral y en su utilización para detectar la ausencia del gen GSTM1 antes de los posibles cambios histológicos y clínicos que conducen a tratamientos invasivos y costosos (36).

Una vez obtenidas las muestras celulares a través de la citología exfoliativa, estas pasan a ser estudiadas por medio de la técnica de PCR. El PCR es una herramienta utilizada para el estudio de los ácidos nucleicos, teniendo una alta sensibilidad, reproducibilidad y eficiencia que genera resultados confiables en poco tiempo y que son fáciles de analizar. Este procedimiento copia múltiples veces una secuencia específica de ADN blanco mediante una catálisis llevada a cabo por la enzima ADN-polimerasa, de tal manera que cantidades pequeñas de ADN pueden ser sintetizadas y copiadas, tal y como se observa en las ilustraciones 1 y 2. El desarrollo de esta técnica permite estudiar y manipular mejor al ADN, facilitando el establecimiento de protocolos experimentales en biología molecular (35).
<table>
<thead>
<tr>
<th>Genotypes</th>
<th>0/0</th>
<th>T1/M1</th>
<th>T1/0</th>
<th>M1/0</th>
</tr>
</thead>
<tbody>
<tr>
<td>423 bp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>310 bp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>230 bp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

M: molecular marker (100 bp).

Ilustración 1: Diagrama de un perfil electroforésico en gel de agarosa (1.5%) de los genes GSTM1 y GSTT1, presentando los genotipos correspondientes (presencia o ausencia) de los fragmentos de ADN en bases pares (38).
Ilustración 2: PCR de genes GSTM1 resueltos por electroforesis en gel de agarosa. M es una escalera de ADN de 50pb y C es el control. Un fragmento de ADN 157pb se puede ver en todas las reacciones de PCR y un fragmento de ADN de 230pb sólo está presente en las muestras que contienen el gen GSTM1 (39).

En un estudio realizado en el año 2010 por F. P. Koch y cols. se determinó el genotipo para GSTM1 de 28 pacientes mediante PCR utilizando ADN genómico extraído a partir de sangre periférica y células obtenidas mediante citología exfoliativa de zonas de mucosa oral normal y de sectores que presentaban lesiones de Carcinoma Escamocelular. Las células recogidas se suspendieron inmediatamente en una estabilización de ARN reactivo y luego se sedimentaron por centrifugación durante 5 min a 10.000 rpm, eliminando luego el sobrenadante. Los sedimentos celulares se congelaron rápidamente y se almacenaron a -80 ºC para su posterior análisis en tiempo real RT-qPCR, obteniendo así que el 54% de
los pacientes presentaron genotipo nulo de GSTM1 acompañado con un aumento de tamaño del tumor, el estado y metástasis linfática (37).

6. **Características histológicas de la mucosa oral normal**

Los componentes de la mucosa oral son el epitelio oral y el tejido conectivo o lámina propia. Su interfase está constituida por la proyección del epitelio hacia la lámina propia, llamado crestas epiteliales y por la proyección del tejido conectivo hacia el epitelio oral, llamado papilas conectivas (8) (Ilustración 3).

Según la función que cumple la mucosa oral se clasifica en mucosa masticatoria, mucosa de revestimiento y mucosa especializada (8) (Tabla I).
Tabla I: Clasificación y descripción de la mucosa oral normal. (Nanci, 2008).

<table>
<thead>
<tr>
<th>TIPO DE MUCOSA</th>
<th>CARACTERÍSTICAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masticatoria</td>
<td></td>
</tr>
<tr>
<td>Mucosa gingival y paladar duro</td>
<td>Epitelio oral: Escamoso estratificado queratinizado.</td>
</tr>
<tr>
<td></td>
<td>Estrato queratinizado capa orto o paraqueratina.</td>
</tr>
<tr>
<td></td>
<td>Estrato granuloso 2 a 3 capas epiteliales, planas, eosínófilas.</td>
</tr>
<tr>
<td></td>
<td>Estrato espinoso 6 a 8 capas epiteliales, poligonales, ligeramente basófilas.</td>
</tr>
<tr>
<td></td>
<td>Estrato basal 1 capa epitelial, cúbicas, basófilas.</td>
</tr>
<tr>
<td></td>
<td>Lámina propia: Tejido fibrovascular.</td>
</tr>
<tr>
<td>Revestimiento</td>
<td></td>
</tr>
<tr>
<td>Mucosa yugal, alveolar, labial, piso de boca, paladar blando y vientre lingual</td>
<td>Epitelio oral: Escamoso estratificado no queratinizado.</td>
</tr>
<tr>
<td></td>
<td>Estrato superficial 2 a 3 capas de células epiteliales planas, con núcleo, eosínófilo.</td>
</tr>
<tr>
<td></td>
<td>Estrato intermedio 2 a 3 capas epiteliales, planas, eosínófilas.</td>
</tr>
<tr>
<td></td>
<td>Estrato espinoso 6 a 8 capas epiteliales, poligonales, ligeramente basófilas.</td>
</tr>
<tr>
<td></td>
<td>Estrato basal 1 capa epitelial, células cúbicas, basófilas.</td>
</tr>
<tr>
<td></td>
<td>Lámina propia: Tejido fibroso denso.</td>
</tr>
<tr>
<td>Especializada</td>
<td></td>
</tr>
<tr>
<td>Dorso lingual</td>
<td>Epitelio oral: Escamoso estratificado queratinizado.</td>
</tr>
<tr>
<td></td>
<td>Con papilas: fungiformes, filiformes y foliadas.</td>
</tr>
<tr>
<td></td>
<td>Lámina propia: Tejido fibrovascular.</td>
</tr>
</tbody>
</table>
7. Características histológicas de la mucosa lingual normal

Generalidades

El órgano lingual es un músculo tapizado por mucosa especializada y presenta como función principal participar en la percepción gustativa. Histológicamente se constituye por mucosa, submucosa y tejido muscular estriado (9).

La mucosa que recubre la porción ventral y dorsal de la lengua es diferente.

- Superficie ventral: Epitelio plano estratificado no queratinizado delgado y liso. La lámina propia también es delgada y formada por tejido conjuntivo laxo con numerosas papilas cortas. Esta lámina es elástica, favoreciendo cambios rápidos en cuanto a diámetro y forma durante los movimientos que realiza la lengua. También se observan numerosas células adiposas, glándulas salivales menores: glándulas de Blandin y Nuhn, ubicadas cerca de la punta de la lengua, y glándulas de Weber, ubicadas en la posición lateral y posterior, vasos sanguíneos y vasos linfáticos. No existe submucosa y el corion está unido a los haces musculares (9).
- Superficie dorsal: Se observa una mucosa dividida en dos sectores por una línea en forma de V: aquella que cubre los dos tercios anteriores o cuerpo y la que cubre el tercio posterior o raíz de la lengua (9).
El epitelio que recubre el cuerpo es de tipo plano estratificado parcialmente queratinizado, la lámina propia está formada por tejido conectivo laxo en conjunto con células adiposas (Ilustración 4). Además, existe un tejido conectivo denso y firme que separa de manera neta la mucosa de la submucosa. Esta separación se evidencia de manera más marcada en la punta de la lengua donde se forma la fascia lingual. Este sector de la lengua tiene un aspecto aterciopelado debido a la presencia de pequeñas proyecciones llamadas papilas linguales (9).

![Ilustración 4: Corte histológico de la superficie ventral de la lengua (8).](image)

Papilas linguales

Existen 4 tipos de papilas en la superficie lingual: las filiformes, fungiformes, caliciformes y las foliadas. Las papilas fungiformes son aquellas que se encuentran en mayor cantidad en la punta y parte lateral de la lengua. Éstas, debido a su localización, su mayor cantidad de corion y su poca queratinización
son más propensas a afectarse por distintos procesos inflamatorios causados por irritantes (10), haciendo que este sector de la lengua sea un sitio de interés para realizar estudios relacionados con el contacto con agentes cancerígenos, su acumulación en el tiempo y la capacidad de enzimas como la GSTM1 de contribuir a su depuración.
IV. OBJETIVOS

1. Objetivo general:

Determinar la frecuencia del polimorfismo del gen GSTM1 en mucosa lingual normal en mayores de 40 años mediante técnica de citología exfoliativa.

2. Objetivos específicos:

• Describir la muestra de estudio según edad, género, hábito de tabaco, hábito de alcohol e antecedentes de cáncer en familia directa.
• Asociar la presencia del polimorfismo del gen GSTM1 con la edad, género del paciente, hábito de tabaco, hábito alcohólico y antecedentes de cáncer en familia.
V. MATERIAL Y MÉTODO

1. Tipo de estudio:
 Estudio descriptivo, transversal, tipo serie de casos.

2. Población y muestra:
 La población correspondió a pacientes que acudieron a la Clínica de Patología Dentomaxilar y Máxilofacial de las dependencias de la Clínica Odontológica Universidad Andrés Bello sede Santiago y Viña del Mar desde julio hasta octubre 2016.

 La selección de los pacientes fue por conveniencia. Éstos debieron cumplir con los criterios de inclusión y accedieron de manera voluntaria a participar del presente trabajo de investigación firmando un consentimiento informado (Anexo 1).

3. Criterios de Inclusión:

 • Pacientes con mucosa de borde y vientre lingual sin alteraciones patológicas (liquen plano, lupus eritematoso, leucoplasia, eritroplasia, leucoeritroplasia, carcinomas, sarcomas, úlceras que no curan, manchas rojas o blancas, etc.)

 • Pacientes sobre 40 años de edad, considerando pacientes de ambos sexos.

 • Pacientes chilenos.
4. **Criterios de exclusión:**

- Pacientes con cáncer en la mucosa oral.
- Pacientes con metástasis orales.
- Pacientes inmunocomprometidos, con tratamiento o posterior a tratamiento con quimio o radioterapia.
- Pacientes con limitación de la apertura bucal o con cualquier otra condición que no permita realizar un correcto examen oral.
- Pacientes con disminución en sus facultades intelectuales, parálisis cerebral y alteraciones psiquiátricas descompensadas.
5. **Variables en estudio:**

Tabla II: Variables en estudio, definición de variable, tipo de variable y descripción.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Tipo de variable</th>
<th>Escala de medición</th>
<th>Valor de la variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edad</td>
<td>Cuantitativa discreta</td>
<td>De razón</td>
<td>≥ 40 años - ∞</td>
</tr>
<tr>
<td>Género</td>
<td>Cualitativa</td>
<td>Dicotómica nominal</td>
<td>Masculino, femenino</td>
</tr>
<tr>
<td>Hábito tabáquico</td>
<td>Cualitativa, independiente</td>
<td>Tricotómica, nominal</td>
<td>Fumador, no fumador, ex-fumador</td>
</tr>
<tr>
<td>Número de cigarillos diarios</td>
<td>Cuantitativa, discreta</td>
<td>De razón</td>
<td>0 - ∞</td>
</tr>
<tr>
<td>Hábito alcohólico</td>
<td>Cualitativa, independiente</td>
<td>Tricotómica, nominal</td>
<td>Bebedor, no bebedor, ex bebedor</td>
</tr>
<tr>
<td>Antecedentes familiares de cáncer</td>
<td>Cualitativa, dictómica</td>
<td>Nominal</td>
<td>Sí, no</td>
</tr>
<tr>
<td>Diagnóstico GSTM1</td>
<td>Cualitativa, dicotómica</td>
<td>Nominal</td>
<td>Ausencia, presencia</td>
</tr>
</tbody>
</table>

Se entregó un cuestionario a cada paciente, donde se registró el nombre completo del paciente, género, edad, consumo de tabaco, consumo de alcohol y antecedentes de cáncer (Anexo 2).
6. **Definiciones operacionales**

Edad: Tiempo que ha vivido una persona contando desde su nacimiento, medido en años. Se obtuvo por medio de una pregunta, donde el paciente expresó su edad en años cumplidos en el cuestionario autoadministrado (Anexo 2).

Género: Forma de agrupación de los seres vivos según características que pueden compartir varios de ellos. Se consignó como masculino o femenino, según lo registrado en el cuestionario autoadministrado (Anexo 2).

Hábito tabáquico: Acción de consumir cigarrillos como una práctica habitual. Se consignó como fumador, no fumador y ex fumador, considerando al fumador como aquel paciente que consume cigarrillos en la actualidad en distintas cantidades, al no fumador como aquel paciente que nunca ha consumido cigarrillos y al ex fumador como aquel que no ha consumido cigarrillo en los últimos 6 meses. Se obtuvo por medio de la encuesta administrada al paciente (Anexo 2).

Número de cigarrillos diarios: Cantidad diaria de cigarrillos consumidos por los pacientes fumadores. Se obtuvo por medio de la encuesta administrada al paciente (Anexo 2).
Hábito alcohólico: Acción de consumir bebidas alcohólicas como una práctica habitual. Se consignó como bebedor, no bebedor y ex bebedor, considerando al bebedor como aquel paciente que consume alcohol en la actualidad en distintas dosis, al no bebedor como aquel paciente que nunca consume alcohol o sólo lo hace 1 o 2 veces al año y al ex bebedor como aquel que no ha consumido alcohol en los últimos 6 meses. Se obtuvo por medio de la encuesta administrada al paciente (Anexo 2).

Antecedentes familiares directos de cáncer: Historia médica referente a familiares directos (madre, padre y hermanos) que hayan sido diagnosticados con algún tipo de neoplasia maligna (cáncer). Se obtuvo por medio de la encuesta administrada al paciente (Anexo 2).

Diagnóstico GSTM1: Presencia o ausencia del gen GSTM1 en el material genético (ADN) de cada paciente, obtenido a través del procesamiento de cada muestra tomada desde los bordes laterales de la mucosa lingual.
7. **Estandarización:**

Para la estandarización de los investigadores Licenciada Valentina Moreno Madrid y Licenciado Sergio Vicuña Avilés se realizó un estudio piloto de 11 pacientes y sus muestras respectivas.

a. Diagnóstico y toma de muestras

La toma de muestra de los investigadores que recolectaron los datos se realizó bajo la supervisión de la especialista en patología oral Dra. Alejandra Fernández, que incluyó en primera instancia una observación clínica y diagnóstico de mucosa lingual sana para descartar alteraciones patológicas y así proceder a la toma de muestras de los bordes laterales de la lengua. Los datos obtenidos en este estudio piloto se anexaron en los resultados finales de este estudio.

b. Etapas de laboratorio

El profesional, Dr. Mauricio Bittner, que realizó el procesamiento de las muestras en el Laboratorio de Microbiología y Biotecnología Oral de la Facultad de Ciencias Biológicas de la Clínica Odontológica de la Universidad Andrés Bello, sede República, Santiago, cuenta con protocolos para la manipulación de muestras biológicas, debido a que se especializó y ha realizado numerosas investigaciones en relación al procesamiento de muestras que contengan material genético. Además, para las etapas de laboratorio se contó con la ayuda
de Luis Quiñones en las dependencias del Laboratorio de Carcinogénesis Química y Farmacocinética de la Universidad de Chile.

8. Técnica para la obtención de muestra:

La técnica se basó en lo descrito por Christopher Naugler (2008) (1) para toma de muestras mediante citología exfoliativa. Esta guía se siguió en forma estricta. El paciente se recostó en un sillón dental de las Clínicas Odontológicas de la Facultad de Odontología, Universidad Andrés Bello, sede Santiago y Viña del Mar, con el respaldo inclinado en 45º, bajo luz dental, donde se procedió a la examinación extra e intraoral y toma de muestra.

Por cada paciente se contó con:

- Un par de guantes de látex
- 1 bandeja de examen completa estéril
- 2 gasas estériles
- 2 cepillos citológicos estériles
- 2 tubos transportadores tipo FALCON
- 1 Pechera

En el momento de la toma del examen, el paciente no debió haber consumido ningún alimento o bebida por al menos una hora. El investigador

examinó la cavidad bucal, tomó con la gasa estéril la punta de la lengua y observó el borde lateral y vientre lingual. Se realizó el diagnóstico de estas zonas. Una vez que se confirmó que estuvieran sanas y normales, se continuó con la técnica de obtención de muestra. Se utilizó el protocolo para toma de muestra (Anexo 3). Mediante la técnica de citología exfoliativa, se utilizaron hisopos estériles con los que se efectuó un frotis del borde lateral de la lengua, zona posterior por ambos lados. El hisopo se aplicó con una presión ligera y rotándolo en 360º sobre la superficie oral previamente limpiada con una gasa. Las muestras fueron contenidas en tubos tipo Falcon estériles y transportadas para su posterior almacenamiento y procesamiento. Cada tubo fue etiquetado e identificado.

9. **Transporte de la muestra:**

Las muestras fueron transportadas inmediatamente después de la toma desde la Clínica de Patología Dentomaxilar y Maxilofacial de la Universidad Andrés Bello, sede Santiago y Viña del Mar, en un recipiente adaptado especialmente para el manejo de muestras biológicas, el cual se encontró a una temperatura de -20º grados Celcius, hacia el Laboratorio de Microbiología y Biotecnología Oral de la Facultad de Ciencias Biológicas de la Universidad Andrés Bello sede República, Santiago.

10. **Técnica para el procesamiento de la muestra:**
a. **Extracción de ADN de las muestras**

Las muestras de los voluntarios fueron procesadas en un tiempo inferior a 48 horas. La extracción de ADN se realizó mediante el método convencional. Se agregaron 560 µL de buffer T.E, 30 µL de SDS al 10% más 10 µL de proteína K y se mantuvo en la estufa mínimo por 1 hora a 37°C. Luego se agregaron 600 µL de Fenol Cloroformo isoamilico y se centrifugó por 5 minutos para después transferir 400 µL de la fase acuosa a un nuevo tubo Eppendorf y añadir 40 µL de Acetato de Sodio 3M (0.1 vol) más 1000µL de Etanol absoluto frío. Se mezcló suavemente y se llevó a -20°C por 20 minutos. Se retiró el Etanol y se agregaron 50 µL agua destilada estéril.

b. **Amplificación del ADN mediante Reacción en Cadena de la Polimerasa**

Los reactivos para la PCR fueron TaqPol Recombinante (Invitrogen), Buffer Taq 10X KCl (Invitrogen), Buffer Taq 10X (NH4), SO4 (Invitrogen), MgCl2 50 mM (Invitrogen), dNTPs 40 mM, DNA cuantificado, agua libre de nucleasas, Buffer de carga (Bioline, USA) e HyperLadder 100 pb (Bioline, USA) (ver Tabla III).

Se utilizó la técnica PCR en el termociclador -STORM 482, con los partidores GSTM1 Forward (GSTM1F) 5’ CTGCCCACTTGATTGATGGG 3’ GSTM1 Reverse (GSTM1R) 5’ CTGGATTGTAGCAGATCATGC 3’ y los partidores CYP1A1 Forward (CYP1A1 R) 5’ CAGTGAAGGGTGTAGCCGCT 3’
y CYP1A1 Reverse (CYP1A1 F) 5' TAGGAGTCTTGTCTCATGCCT 3' a una temperatura de alineamiento de 57°C, con un tiempo de elongación de 1 minuto en 30 ciclos, para obtener la amplificación.

<table>
<thead>
<tr>
<th>SUSTANCIA</th>
<th>CANTIDAD</th>
<th>EJEMPLO (para 6 muestras)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kit de polimerasa Impront II dNTP.</td>
<td>10 µl</td>
<td>70 µl</td>
</tr>
<tr>
<td>PRIMER 1</td>
<td>0,4 µl</td>
<td>2,8 µl</td>
</tr>
<tr>
<td>PRIMER 2</td>
<td>0,4 µl</td>
<td>2,8 µl</td>
</tr>
<tr>
<td>ADN</td>
<td>2 µl</td>
<td>-</td>
</tr>
<tr>
<td>H2O</td>
<td>7,2 µl</td>
<td>50,4 µl</td>
</tr>
<tr>
<td>TOTAL</td>
<td>20 µl</td>
<td>126 µl</td>
</tr>
</tbody>
</table>

Tabla III: Mix de mezcla para PCR.
11. Diagrama de flujo:

- Participante
 - Se realiza
 - Historia y examen clínico completo
 - ¿Cumple con los criterios de inclusión? (sí / no)
 - no: No participa del estudio
 - sí: No desea participar
 - Firma consentimiento informado
 - Toma de muestra
 - FASE I: Frotis o citología exfoliativa
 - Transporte de la muestra
 - De presentar patologías se deriva a las CLÍNICAS ODONTOLÓGICAS
Transporte de la muestra

Procesamiento

Inmediato
- Se realiza extracción de ADN
 - Inmediatamente
 - Mediatamente

Mediato
- Se almacena congelada a -20 °C
 - Se descongela

FASE III: Técnica de Reacción en Cadena de la Polimerasa
 - Se descongela

FASE IV: Electroforesis
 - Observación

REGISTRO DE RESULTADOS

45
12. Análisis estadístico:

Las variables categóricas (género, hábito tabáquico, hábito alcohólico) se describieron en base a la frecuencia absoluta y relativa. La variable continua paramétrica de edad y consumo de cigarros diario se describieron en base a la media y desviación estándar. Se determinó la proporción de los pacientes con el polimorfismo del gen GSTM1 con un intervalo de confianza del 95%. Se analizaron las variables categóricas según sexo, utilizándose el Test exacto de Fisher o Chi cuadrado de Pearson y para las variables continuas paramétricas, mediante el test de T-student de muestras no pareadas. Se utilizó un nivel de significancia de un 0,05 y se realizó el análisis estadístico con el programa STATA 12® (StataCorp LP, Texas).
13. Consideraciones éticas:

Las implicancias éticas se guiaron según lo que fue descrito en la Declaración de Helsinki, en la cual se establecen los principios éticos que orientan a los investigadores que realizan estudios con seres humanos.

Cada persona interesada por participar del estudio fue informada de sus derechos:

• Participar o no en la investigación.
• Retirar su consentimiento en cualquier momento, sin exponerse a represalia (Anexo 1).
• Conocer en qué consiste el estudio, sus objetivos y potencial relevancia en el área terapéutica de este síntoma.
• Ser informados finalmente de los resultados obtenidos de la mucosa oral.

Sumado a lo anterior, a los pacientes se les informó lo siguiente:

• El procedimiento para la toma de muestras es seguro y no invasivo, teniendo así un riesgo de complicaciones muy bajo. De todos modos, en caso de que llegase a presentarse algún inconveniente, se les proporcionaría asesoría y tratamiento oportuno.
• El estudio de las muestras de cada paciente no fue a través de sus nombres, sino que de un número correspondiente, el cual se adjuntó a cada consentimiento informado y cuestionario autoadministrado.
Finalmente, se les otorgó las siguientes retribuciones a los pacientes que accedieron voluntariamente a este estudio:

- Se realizó un examen odontológico y bucal completo. En caso de que presentaran necesidad de tratamiento, o bien, alguna anomalía o lesión en la cavidad oral, se completó un diagnóstico y derivación a las especialidades correspondientes, dentro de la misma Facultad de Odontología de la Universidad Andrés Bello, sede República, Santiago.
- A cada paciente se entregó un folleto informativo sobre el cáncer oral.
- A cada paciente se entregó un obsequio para su cuidado dental.
- Una vez que se obtuvieron los resultados, todos aquellos pacientes que presentaron el polimorfismo o ausencia del gen GSTM1 recibieron una sesión educativa sobre el cáncer oral (principalmente para el Carcinoma Oral de Células Escamosas) y se les ofreció la posibilidad de controles y seguimiento en el futuro.
VI. RESULTADOS

Desde julio a octubre del 2016 se tomaron muestras desde la mucosa lingual mediante técnica de citología exfoliativa a los 156 voluntarios examinados, los cuales aceptaron su participación en este estudio mediante la firma de un consentimiento informado. Luego se cuantificó la concentración de ADN genómico de las 156 muestras. Del total, sólo 90 se ajustaron a los criterios de concentración de ADN a un mínimo de 100 ng/ul con una relación 260/280 mayor a 1.7. Además, se evaluó la integridad del ADN mediante electroforesis con un buffer de carga en un gel de agarosa del 2% utilizando bromuro de etidio para su detección. Esto permitió verificar la integridad del ADN genómico obtenido.

La muestra de estudio consistió en 90 voluntarios de la clínica Odontológica de la Universidad Andrés Bello, sede Santiago y Viña del Mar. De los 90 voluntarios, 60 eran mujeres (66,67%) y 30 hombres (33,33%), en una relación 2:1 respectivamente. La media de edad fue de 56,6±11,55 años, la distribución del rango de edad se observa en el Gráfico I. La distribución del hábito tabáquico, hábito alcohólico y antecedentes de cáncer en la familia se puede contemplar en la Tabla IV.
Gráfico 1: Distribución de los pacientes registrados rango de edad

Tabla IV: Distribución del hábito tabáquico, alcohólico y antecedentes de cáncer familiar según género y muestra total.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Total (%) (Desviación estándar %)</th>
<th>Género (%) (Desviación estándar %)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Hombre</td>
</tr>
<tr>
<td>Hábito tabáquico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ex Fumador</td>
<td>24.44 (15.39 – 33.49)</td>
<td>20 (4.80 – 35.19)</td>
</tr>
<tr>
<td>No fumador</td>
<td>44.44 (33.97 – 54.91)</td>
<td>40 (21.39 – 58.60)</td>
</tr>
<tr>
<td>Hábito Alcohólico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bebedor</td>
<td>30 (20.34 – 39.65)</td>
<td>46.67 (27.71 – 65.61)</td>
</tr>
<tr>
<td>Ex bebedor</td>
<td>6.67 (1.41 – 11.92)</td>
<td>6.67 (0 – 13.16)</td>
</tr>
<tr>
<td>No bebedor</td>
<td>63.3 (53.18 – 73.48)</td>
<td>46.67 (27.71 – 65.61)</td>
</tr>
<tr>
<td>Antecedentes de cáncer en la familia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sin antecedentes</td>
<td>48.89 (38.36 – 59.41)</td>
<td>56.67 (37.84 – 75.48)</td>
</tr>
<tr>
<td>Con antecedentes</td>
<td>51.11 (40.58 – 61.63)</td>
<td>43.33 (24.51 – 62.15)</td>
</tr>
</tbody>
</table>
En la muestra obtenida no existen diferencias significativas en el hábito de tabaquismo respecto a la población nacional \((p = 0,066)\), la cual asciende a un 40,6%. Tampoco existe asociación entre el sexo y el hábito tabáquico \((p = 0,426)\). Asimismo, no existen diferencias significativas en la distribución del antecedente de cáncer entre hombres y mujeres \((p = 0,297)\). No obstante, si existen diferencias estadísticamente significativas entre la distribución del consumo de alcohol entre hombres y mujeres \((p = 0,046)\).

La frecuencia encontrada de polimorfismo del gen GSTM1 fue de un 32,22 % (con un intervalo de confianza del 95%, entre 22,37% y 42,06%). La ilustración 5 muestra la electroforesis de 6 muestras en un gel de agarosa al 2%. El genotipo GSTM1 se detectó por la presencia o ausencia de productos de PCR.

La distribución del polimorfismo del gen GSTM1 según rango de edad se puede observar en el gráfico 2. Los resultados de la distribución del polimorfismo del gen GSTM1 según género, hábito tabáquico, hábito alcohólico y antecedentes de cáncer en la familia se pueden observar en la tabla V.

No existen diferencias estadísticamente significativas entre la distribución del polimorfismo GSTM1 entre hombres y mujeres \((p = 0,750)\). Asimismo, no existen diferencias entre la presencia del polimorfismo del gen GSTM1 y la distribución de la edad \((p = 0,677)\), el hábito tabáquico \((p = 0,355)\), el consumo de alcohol \((p = 1,000)\) y el antecedente de cáncer familiar \((p = 0,203)\).
No existe asociación entre los hábitos (tabáquico y alcohólico) y el polimorfismo del gen GSTM1 ($p=0.870$).

Ilustración 5: Productos del PCR del gen GSTM1.

Productos del PCR del gen GSTM1, mediante electroforesis en gel de agarosa 2%. El carril ladder corresponde al estándar 100 pb. Carril 7 control negativo. Carriles 1, 3-6 se observa banda control (superior) de CYP1A1 (340 pb) y banda (inferior) del gen GSTM1 (273 pb). En el Carril 2 se observa la ausencia del gen GSTM1 y la presencia del gen CYP1A1.
Distribución del polimorfismo del gen GSTM1 según rango etario.

Gráfico 2: Distribución del polimorfismo del gen GSTM1 según rango etario.
Tabla V: Distribución del polimorfismo del gen GSTM1 según género, hábito tabáquico, alcohólico y antecedentes de cáncer familiar.

<table>
<thead>
<tr>
<th>Variables</th>
<th>GSTM1 +/+ n</th>
<th></th>
<th></th>
<th>GSTM1 null/null n</th>
<th></th>
<th>Total n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Género</td>
<td>Femenino</td>
<td>40</td>
<td>66,67</td>
<td>(54,38 - 78,94)</td>
<td>20</td>
<td>33,33</td>
</tr>
<tr>
<td></td>
<td>Masculino</td>
<td>21</td>
<td>70</td>
<td>(52,59 - 87,40)</td>
<td>9</td>
<td>30</td>
</tr>
<tr>
<td>Hábito tabáquico</td>
<td>Fumador</td>
<td>22</td>
<td>78,57</td>
<td></td>
<td>6</td>
<td>21,43</td>
</tr>
<tr>
<td></td>
<td>Ex Fumador</td>
<td>14</td>
<td>63,64</td>
<td></td>
<td>8</td>
<td>36,36</td>
</tr>
<tr>
<td></td>
<td>No fumador</td>
<td>25</td>
<td>62,50</td>
<td></td>
<td>15</td>
<td>37,50</td>
</tr>
<tr>
<td>Hábito Alcohólico</td>
<td>Bebedor</td>
<td>18</td>
<td>66,67</td>
<td></td>
<td>9</td>
<td>33,33</td>
</tr>
<tr>
<td></td>
<td>Ex bebedor</td>
<td>4</td>
<td>66,67</td>
<td></td>
<td>2</td>
<td>33,33</td>
</tr>
<tr>
<td></td>
<td>No bebedor</td>
<td>39</td>
<td>68,42</td>
<td></td>
<td>18</td>
<td>31,58</td>
</tr>
<tr>
<td>Antecedentes de cáncer en la</td>
<td>Sin antecedentes</td>
<td>27</td>
<td>61,36</td>
<td></td>
<td>17</td>
<td>38,64</td>
</tr>
<tr>
<td>familia</td>
<td>Con antecedentes</td>
<td>34</td>
<td>73,78</td>
<td></td>
<td>12</td>
<td>26,22</td>
</tr>
</tbody>
</table>
VII. DISCUSIÓN

En la última década ha aumentado el interés por parte de la comunidad científica de identificar indicadores orales que permitan predecir la transformación maligna del epitelio oral. Este acontecimiento se debe a que el diagnóstico de cáncer oral es realizado a través de cambios clínicos e histopatológicos de la mucosa oral de manera tardía (40). Incluso, la mortalidad de cáncer oral en Chile se ha mantenido en los últimos 50 años a pesar de las diferentes campañas de prevención y diagnóstico precoz de cáncer oral (5). Entre los diferentes indicadores de diagnóstico de cáncer oral, la familia de la Glutation S-Transferasas, específicamente la presencia del polimorfismo de GSTM1 en individuos caucásicos, asiáticos y africanos, se ha asociado a un mayor riesgo de susceptibilidad para desarrollar COCE (2, 3, 41, 42).

Para el clínico sería interesante conocer un método de detección del polimorfismo GSTM1 sencillo y de bajo costo. Esto, con el fin de determinar cambios genéticos sin tener necesariamente cambios clínicos e histopatológicos evidentes, pudiendo identificar cuáles son los pacientes de riesgo y realizar así su seguimiento. Por tal motivo, analizamos el material genético de 90 pacientes chilenos con el objetivo de detectar la frecuencia del polimorfismo GSTM1 caracterizando los factores etiológicos de COCE.
El rango etario de los voluntarios examinados abarcó adultos y adultos mayores debido a que representan el grupo de riesgo para el desarrollo de COCE (43). Además, es a esta edad donde se manifiestan los efectos acumulativos de los factores de riesgo como el consumo de tabaco y alcohol (46, 47, 48). Así lo han descrito diversos autores que han estudiado este polimorfismo en pacientes diagnosticados de COCE en Chile y en el mundo (2, 3, 41, 42, 48, 54).

En Chile no se han realizado estudios epidemiológicos que den cuenta de la presencia o ausencia del gen GSTM1 en mucosa oral sana por medio de citología exfoliativa a la fecha y, a nivel mundial, la mayoría de los estudios relacionados con este gen se han enfocado en encontrar alguna relación del polimorfismo y la presencia de neoplasias malignas orales -tales como el COCE- (2, 3, 7, 17, 24, 29, 33, 37) y de lesiones malignas en otras regiones del organismo (3, 16, 21, 34).

De los 90 pacientes examinados, la mayoría se encontraba en el rango de edad entre 50 y 59 años, lo que se puede explicar porque la muestra fue determinada por conveniencia y sólo con pacientes mayores de 40 años, pudiendo ser este rango el de mayor asistencia a la Clínica Odontológica en ese momento.
En cuanto al hábito tabáquico se observa que la población en estudio tiene un alto consumo de esta sustancia. El valor obtenido es distinto al expresado por la Encuesta Nacional de Salud 2009-2010 realizada por el MINSAL, que señala que la prevalencia de fumadores en Chile es de un 40,6% en la población de 15 años y más, lo que podría deberse a que los resultados de este estudio se deben a pacientes que por acudir a la Clínica Odontológica de la Universidad Andrés Bello pueden presentar una mayor preocupación por su salud, o bien que hayan modificado su respuesta. Si bien se ve un predominio de consumo masculino, las mujeres están alcanzando valores similares, lo que es comparable con lo que indica la iniciativa “Chile libre de tabaco” de la fundación EPES (49).

En relación al hábito alcohólico, también obtuvimos un porcentaje importante de pacientes que se consideraban bebedores, pero este porcentaje fue distinto al expresado el SENDA en el 2014, donde el consumo de alcohol en Chile ascendió a un 48,9% de la población. Esto se puede justificar de igual forma que el punto anterior, argumentando que por ser pacientes que acuden a la Clínica Odontológica pueden presentar mayor preocupación por su salud, teniendo así mejores hábitos o, en su defecto, por haber modificado su respuesta al momento de ser encuestados. Al igual que en el hábito tabáquico, el mayor porcentaje de bebedores son hombres, lo que se condice con los
resultados obtenidos por la encuesta del SENDA 2014, donde un 55,3% de los consumidores de alcohol en Chile son hombres versus un 42,5% en mujeres.

Tanto para el tabaco como para el alcohol, la población en estudio presenta un alto porcentaje de consumo de estas sustancias a pesar de las campañas de prevención realizadas por el MINSAL, donde se ha destacado que éstos son factores de riesgo para el desarrollo de COCE (2, 5, 50, 51, 52, 53).

En cuanto a los antecedentes de cáncer familiar, se observa que la mayoría de los pacientes relató que algún familiar directo sufrió esta enfermedad. Este resultado es esperable ya que el cáncer es la segunda causa de muerte en Chile, existiendo 91.965 muertes por distintos tipos de tumor maligno en el año 2009 según indica el MINSAL, generando así una alta probabilidad de que los pacientes hayan tenido historia de cáncer en sus familias.

Los resultados obtenidos en este estudio determinaron una frecuencia del polimorfismo del gen GSTM1 en pacientes con mucosa oral normal de un 32,22%, cifra que coincide con el estudio realizado por T.T. Sreelekha y cols y también con el de A. Sharma y cols (54). En el estudio realizado por T.T. Sreelekha y cols. se utilizaron los mismos partidores genéticos para la
amplificación del gen GSTM1 mediante la técnica de PCR (41), sin embargo incluyeron 60 individuos y la muestra fue obtenida de sangre periférica. Por el contrario, J Y Park y cols, T Katoh y cols y Zakiullah y cols, reportaron frecuencias mayores del polimorfismo de GSTM1: 51%, 46,3% y 57% respectivamente (2, 7, 53). Es conveniente señalar que las variaciones encontradas podrían estar fuertemente influenciadas por la raza de los individuos analizados (54). Además, esta diferencia se puede explicar debido a que los autores mencionados obtuvieron las muestras de ADN mediante sangre periférica y utilizaron distintos partidores para la amplificación de ADN (2, 42, 56).

Estudios confirman que alrededor de 50% de la población caucásica hereda dos alelos deficientes del gen GSTM1 o están desprovistos completamente de su actividad. La población chilena es una mezcla híbrida de origen biparental: nativos sur-amerindios (araucanos) y caucásicos (57). En el estudio realizado en Chile en el año 1999 por Quiñones y cols., se quiso determinar la frecuencia de algunos polimorfismos genéticos, entre ellos el de GSTM1, y se analizaron 96 pacientes sanos residentes en la ciudad de Santiago. Las muestras fueron obtenidas a partir de sangre periférica, encontrando un porcentaje del 21,3% para el polimorfismo de este gen. Esto contrasta con nuestro estudio llamando fuertemente la atención, ya que se observa que la frecuencia del polimorfismo de GSMT1 ha aumentado en más
de un 10% en la población chilena a través de los años y, si consideramos que este gen es un indicador de riesgo de cáncer oral (4), resulta preocupante encontrar cifras mayores en la presencia del polimorfismo y una mantención en las tasas de mortalidad este tipo de cáncer en Chile (5).

La presencia del polimorfismo GSTM1 no se asoció a ninguno de los factores que se incluyeron en el estudio (tales como género, edad, hábito tabáquico, consumo de alcohol ni a los antecedentes de cáncer en la familia). Esto se puede explicar debido a que la presencia de este polimorfismo se ha encontrado fuertemente ligado a la etnia de los individuos, siendo frecuente en asiáticos, africanos e indios (35, 54). En Chile, la población es considerada altamente mestiza, por lo que la presencia del polimorfismo del gen GSTM1 podría variar al considerar diferentes zonas geográficas del país (58).

Cabe destacar que las variables de tabaco y alcohol fueron incluidas en este estudio debido a que en la literatura se ha encontrado una relación directa del consumo de estas sustancias y desarrollo de cáncer oral (3, 5, 41). Por otro lado, el polimorfismo del gen GSTM1 se ha considerado como un indicador de riesgo genético de cáncer (43), siendo esperable que las personas que presenten el conjunto de estos factores puedan tener mayor predisposición al desarrollo de neoplasias en la cavidad oral, lo que podría comprobarse a futuro realizando un estudio de casos y controles en donde se pueda establecer un
riesgo relativo entre el polimorfismo del gen GSTM1 y el desarrollo de cáncer oral.

Todos los voluntarios fueron instruidos de cómo realizar un autoexamen de la cavidad oral en sus casas para la pesquisa de cambios que alerten presencia de lesiones potencialmente malignas y malignas propiamente tal. Asimismo, se destacó la importancia de disminuir los factores de riesgo asociados a COCE, como el tabaco y el alcohol. Aquellos voluntarios que tuvieron presencia del polimorfismo del gen GSTM1 se les sugirió realizar controles periódicos cada 6 meses en nuestro servicio odontológico.
VIII. CONCLUSIONES

Los resultados obtenidos en nuestra investigación nos permiten concluir que la frecuencia del polimorfismo del gen GSTM1 en mayores de 40 años de edad que presentaban la mucosa oral sana en la Clínica Odontológica de la Universidad Andrés Bello, sede Santiago y Viña del Mar, se encuentra dentro de los rangos reportados en la literatura. Los pacientes estudiados presentan riesgo de desarrollar COCE tanto por tener el gen GSTM1 polimorfo como por su alto contacto directo con factores de riesgo, tales como el tabaco y el alcohol, los cuales han sido asociados al desarrollo de cáncer oral. Por esto, es necesario educar más a la población en relación a los factores de riesgo que se han asociado al desarrollo de COCE, para así crear consciencia sobre la importancia que tiene asistir periódicamente al dentista.
IX. LIMITACIONES

La principal limitación de nuestro estudio fue falta de conocimiento sobre la etnia por parte de cada paciente. En Chile, la población es altamente mestiza, por lo que la presencia del polimorfismo del gen GSTM1 podría variar en las distintas zonas geográficas del país (58).

A lo anteriormente expuesto podemos agregar la falta de una muestra elegida de manera aleatoria, no por conveniencia y que este estudio no es extrapolable a otras poblaciones.
X. SUGERENCIAS

1. Realizar una investigación similar, pero con un mayor tamaño muestral y realizándola a nivel regional o nacional.

2. Realizar estudios similares en distintas zonas geográficas de Chile para así poder lograr una mejor caracterización étnica del polimorfismo del gen GSTM1.

3. Promover el uso de la citología exfoliativa para este tipo de estudios, en donde se requiera extraer una cantidad suficiente de ADN para ser procesado mediante PCR.

4. Hacer un estudio de casos y controles para poder llegar a establecer un riesgo relativo de la mutación del gen GSTM1 y el desarrollo de cáncer oral.
XI. REFERENCIAS BIBLIOGRÁFICAS

(41) Sreelekha TT, Genetic polymorphism of CYP1A1, GSTM1 and GSTT1 genes in Indian oral cancer. *Oral Oncology* 37 (2001) 593–598.

(42) Hung HC y cols, Genetic Polymorphisms of CYP2E1, GSTM1, and GSTT1; Environmental Factors and Risk of Oral Cancer. *Cancer Epidemiology, Biomarkers & Prevention*. 1997; 6, 901-905.

ANEXO I

Consentimiento Informado

Yo..deaños de edad, RUT.................................manifiesto que he sido informado/a del porque he sido seleccionado para participar en el trabajo de investigación “Detección del polimorfismo del gen GSTM1 en mucosa oral sana en mayores de 40 años”. donde me someteré a un procedimiento que consiste en un método físico no invasivo donde se limpiarán las caras laterales de mi lengua con una gasa y se procederá a raspar el epitelio oral con un hisopo de cepillo estéril. Este procedimiento es indoloro y no dejará lesiones ni cicatrices. La muestra recolectada será procesada en laboratorio de Microbiología y Biotecnología Oral de la Facultad de Ciencias Biológicas de la Clínica Odontológica de la Universidad Andrés Bello, campus República, Santiago.

Tendré el derecho de pedir un informe con los resultados obtenidos y a hablar con alguien con quien me sienta cómodo/a acerca de la investigación. Además de esta información que he recibido, seré informado/a en cada momento y a mi requerimiento de la evolución de mi proceso, de manera verbal y/o escrita si fuese necesario

Tomando todo esto en consideración, doy fe que:

1. Se me ha explicado los conceptos y palabras que no entiendo y en el caso que surja cualquier duda podré contactarme con el responsable y aclararla.

2. He sido informado/a de los beneficios de participar en este estudio y que toda la información recopilada y que he otorgado sólo la conocerán los investigadores del estudio ya que es de carácter confidencial.

3. Se me ha comunicado que en el caso de que este estudio sea publicado, ya sea en una revista internacional o nacional, se mantendrá mi información de
forma confidencial.

Otorgo mi consentimiento previamente teniendo el tiempo de reflexionar si fuera necesario y acepto participar voluntariamente en esta investigación, pudiendo retirarse en cualquier momento si estimo conveniente.

Recibo conforme copia de este documento.

Firma del Paciente

Santiago, _________ de ___________ 2016

Contacto:
Tutora principal: Dra. Alejandra Fernández - +569 98796026
Tutora asociada: Dra. Carolina Somarriva - +569 66468052
Alumnos: Lic. Valentina Moreno: +569 71875626
Lic. Sergio Vicuña: +569 91996031
ANEXO 2

Cuestionario Auto-Administrado

Nombre: __________________________ Rut: __________________________

Dirección __________________________

Teléfono Fijo: __________________________ Teléfono Celular: __________________________

Genero __________________________ Fecha de nacimiento __________________________ Edad __________________________

Por favor responda el siguiente cuestionario marcando con una “X” en el recuadro designado para cada pregunta. En caso de tener alguna duda, pregunte al encuestador.

HISTORIA FAMILIAR Y MÉDICA:

¿Presenta un mínimo de 2 generaciones de ancestros nacidos en Chile?:
Si	No

¿Presenta antecedentes de cáncer en la familia?:
Si	No

¿Presenta o ha presentado algún tipo de cáncer en el organismo?:
Si	No

HÁBITOS: * Complete el cuestionario sólo si corresponde.

<table>
<thead>
<tr>
<th>HÁBITO DE ALCOHOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bebedor____ No bebedor____ Ex –bebedor*____</td>
</tr>
</tbody>
</table>

* Ex bebedores son todos aquellos que no hayan consumido alcohol por al menos 6 meses.
HÁBITO DE TABACO

<table>
<thead>
<tr>
<th>Fumador</th>
<th>No fumador</th>
<th>Ex –fumador*</th>
</tr>
</thead>
</table>

Cantidad promedio de cigarrillos que fuma al día (Ej.: 5 cigarrillos) Nº ___

*Ex fumadores son todos aquellos que no hayan fumado cigarrillos por al menos 6 meses.
ANEXO 3

PROTOCOLO PARA TOMA DE MUESTRA(1)

Ha sido estandarizada con una serie de procedimientos que deben de tenerse en cuenta:

• El profesional recibirá al paciente en el centro de atención correspondiente, previsto y habilitado para la toma de la muestra citológica.

• Se explica al paciente en qué consiste el estudio en forma sencilla.

• Se procederá a la realización de la anamnesis y examinación clínica extra e intraoral. (ANEXO 2)

• Una vez que el paciente cumpla con los requisitos se le hará entrega del consentimiento informado (ANEXO 1), luego de la aceptación de éste se procederá a la toma de muestra.

• Rotulación de transporte: previo a la toma de la muestra es necesario rotular el tubo y el hisopo con los datos identificativos de la paciente y un código de uso interno.

• Visualización de los bordes laterales de la lengua y vientre lingual.

• Recolección de la muestra: con un hisopo de cepillo estéril. El cepillo se aplica con una presión ligera y rotándolo en 360° sobre la superficie oral previamente limpiada con una gasa.

• La muestra será transportada por tubos transportadores tipo FALCON para su posterior procesamiento.