Examinando por Autor "Cárdenas-Jirón, Gloria"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Influence of cyano substituents on the electron density and catalytic activity towards the oxygen reduction reaction for iron phthalocyanine. The case for Fe(II) 2,3,9,10,16,17,23,24-octa(cyano)phthalocyanine(Elsevier Inc., 2020-09) Govan, Joseph; Abarca, Gabriel; Aliaga, Carolina; Sanhueza, Byran; Orellana, Walter; Cárdenas-Jirón, Gloria; Zagal, José H.; Tasca, FedericoIron(II) 2,3,9,10,16,17,23,24-octa(cyano)phthalocyanine (OCNFePc), was tested as a catalyst for the oxygen reduction reaction (ORR) adsorbed on carbon nanotubes. The composite was analyzed spectroscopically and electrochemically characterized at pH 13 and pH 1. The composite showed close to 4 electron processes at pH 13. Computational analysis indicates that the O2 molecule binds end-on to the metal center and that the dioxygen molecule is dissociated on both the Fe metal center and the corral ring. An Analysis of the molecular electrostatic potential confirms the behavior of cyano residues as electron-withdrawing moieties in OCNFePc. As a result of its catalytic behavior and theoretical analysis of its O2 binding energy, OCNFePc was placed in a high position on a volcano correlation of similar phthalocyanine composites. © 2020 The AuthorsÍtem Interpreting Aromaticity and Antiaromaticity through Bifurcation Analysis of the Induced Magnetic Field(ChemistryOpen, 2019-03) Pino-Rios, Ricardo; Cárdenas-Jirón, Gloria; Ruiz, Lina; Tiznado, WilliamIn all molecules, a current density is induced when the molecule is subjected to an external magnetic field. In turn, this current density creates a particular magnetic field. In this work, the bifurcation value of the induced magnetic field is analyzed in a representative set of aromatic, non-aromatic and antiaromatic monocycles, as well as a set of polycyclic hydrocarbons. The results show that the bifurcation value of the ring-shaped domain adequately classifies the studied molecules according to their aromatic character. For aromatic and nonaromatic molecules, it is possible to analyze two ring-shaped domains, one diatropic (inside the molecular ring) and one paratropic (outside the molecular ring). Meanwhile, for antiaromatic rings, only a diatropic ring-shaped domain (outside the molecular ring) is possible to analyze, since the paratropic domain (inside the molecular ring) is irreducible with the maximum value (attractor) at the center of the molecular ring. In some of the studied cases, i. e., in heteroatomic species, bifurcation values do not follow aromaticity trends and present some inconsistencies in comparison to ring currents strengths, showing that this approximation provides only a qualitative estimation about (anti)aromaticity.