Molina-Burgos, B.E.Valenzuela-Sánchez, A.Alvarado-Rybak, M.Klarian, S.Soto-Azat, C.2019-12-112019-12-112018Endangered Species Research, 36, pp. 269-278.1863-5407DOI: 10.3354/esr00906http://repositorio.unab.cl/xmlui/handle/ria/11375Indexación: Scopus.Acknowledgements. We thank Dr. Mauricio González-Chang for his contribution to invertebrate identification and Sally Wren for the revision of an earlier version of the manuscript. We are also extremely grateful to Tomás Elgueta Alvarez for providing Video S1. B.E.M.B. has a fellowship awarded by Universidad Andres Bello. This research project was approved by the Bioethics Committee at the Universi-dad Andres Bello, Chile (N°13/2015), and by permits N°5666/2013, N°230/2015, and N°212/2016 of the Chilean Agriculture and Livestock Service, and N°026/2013 and N°11/2015 IX of the Chilean National Forestry Corporation. This study was funded by the Dirección General de Investi-gación y Doctorados, Universidad Andres Bello, through grant N°DI-53-11/R and national funds through FONDE CYT N°11140902 and 1181758 (to C.S.A.).Darwin's frogs Rhinoderma spp. are the only known mouth-brooding frogs on Earth. The southern Darwin's frog, R. darwinii, is found in the temperate forests of southern South America, is listed as Endangered and could be the only extant representative of this genus. Based on stomach contents, invertebrate prey availability and stable isotope analysis, we determined for the first time trophic ecological parameters for this species. Our results showed that R. darwinii is a generalist sit-and-wait predator and a secondary consumer, with a trophic position of 2.9. Carbon and nitrogen isotope composition indicated that herbivore invertebrates are their main prey, detected in 68.1% of their assimilated food. The most consumed prey included mosquitoes, flies, crickets, grasshoppers and ants. Detritivore and carnivore invertebrates were also ingested, but in lower proportions. Our results contribute to a better understanding of the feeding habits of this fully terrestrial amphibian and provide the first insight into their role linking low forest trophic positions with intermediate predators. We provide valuable biological information for in situ and ex situ conservation which can be used when developing habitat protection, reintroduction and captive breeding programmes. As revealed here, stable isotope analysis is a valuable tool to study the trophic ecology of highly endangered and cryptic species. © The authors 2018.enAmphibianChileConservationFeeding ecologyRhinoderma darwiniiTrophic ecology of the Endangered Darwin's frog inferred by stable isotopesArtículo