Albrecht-Schmitt, Thomas E.Hobart, David E.Páez-Hernández, DayanCelis-Barros, Cristian2022-06-152022-06-152020-08International Journal of Quantum Chemistry Open Access Volume 120, Issue 155 August 2020 Article number e2625400207608https://repositorio.unab.cl/xmlui/handle/ria/22847Indexación: Scopus.Experimental studies on the speciation of berkelium in carbonate media have shown that complexation of berkelium(III) by carbonate results in spontaneous oxidation to berkelium(IV) and that multiple species can be present in solution. We studied two proposed structures present in solution based on theoretical comparisons with spectroscopic data previously reported for Bk(IV) carbonate solutions. The multiconfigurational character of the ground and low-lying excited states in both complexes is demonstrated to result from the strong spin-orbit coupling. Although bonding in Bk(IV) carbonate and carbonate-hydroxide complexes is dominated by strong Coulombic forces, the presence of non-negligible covalent character is supported by ligand-field theory, natural localized orbitals, topological studies of the electron density, and energy transition state natural orbitals for chemical valence. Bond orders based on natural localized molecular orbitals show that Bk-OH bonds possess enhanced orbital overlap, which is reflected in the bond strength. This is also observed in the decomposition of the orbital interaction energy into individual deformation density pairs. © 2020 Wiley Periodicals, Inc.enactinidesbondingCASSCFelectronic structureligand-field theoryNLMOrelativistic effectsTheoretical examination of covalency in berkelium(IV) carbonate complexesArtículo10.1002/qua.26254