Blazquez, CarolaRies, JanaMiranda, Pablo AndresLeon, Roberto Jesus2022-08-222022-08-2220181939-1390https://repositorio.unab.cl/xmlui/handle/ria/23597Indexación: ScopusMap Matching Algorithms (MMAs) are developed to solve spatial ambiguities that arise in the process of assigning GPS measurements onto a digital roadway network. Scarce systematic parameter tuning approaches exist in the literature for optimizing MMA performance. Thus, a novel framework is proposed for a systematic calibration of the parameters of a post-processing MMA. The calibration approach consists of an Instance-specific Parameter Tuning Strategy (IPTS) that employs Fuzzy Logic principles. The proposed fuzzy IPTS tool determines algorithm-specific parameter values based on instance-specific information a priori to the execution of the MMA. Finally, the proposed IPTS tool is able to adjust to two particular decision maker preferences on algorithm performance, namely solution quality and computational time. © 2009-2012 IEEE.enCalibrationComputer circuitsDecision makingFuzzy logicAn Instance-Specific Parameter Tuning Approach Using Fuzzy Logic for a Post-Processing Topological Map-Matching AlgorithmArtículoAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)10.1109/MITS.2018.2867527