Fiore, A.Benetti, S.Nicholl, M.Reguitti, A.Cappellaro, E.Campana, S.Bose, S.Paraskeva, E.Berger, E.Bravo, T.M.Burke, J.Cai, Y.-Z.Chen, T.-W.Chen, P.Ciolfi, R.Dong, S.Gomez, S.Gromadzki, M.Gutiérrez, C.P.Hiramatsu, D.Hosseinzadeh, G.Howell, D.A.Jerkstrand, A.Kankare, E.Kozyreva, A.Maguire, K.McCully, C.Ochner, P.Pellegrino, C.Pignata, G.Post, R.S.Elias-Rosa, N.Shahbandeh, M.Schuldt, S.Thomas, B.P.Tomasella, L.Vinkó, J.Vogl, C.Wheeler, J.C.Young, D.R.2024-05-242024-05-242022-05-01Monthly Notices of the Royal Astronomical Society, Volume 512, Issue 3, Pages 4484 - 4502, 1 May 20220035-8711https://repositorio.unab.cl/handle/ria/57036Indexación: Scopus.SN 2018hti was a very nearby (z = 0.0614) superluminous supernova with an exceedingly bright absolute magnitude of -21.7 mag in r band at maximum. The densely sampled pre-maximum light curves of SN 2018hti show a slow luminosity evolution and constrain the rise time to ∼50 rest-frame d. We fitted synthetic light curves to the photometry to infer the physical parameters of the explosion of SN 2018hti for both the magnetar and the CSM-interaction scenarios. We conclude that one of two mechanisms could be powering the luminosity of SN 2018hti; interaction with ∼10 M⊙ of circumstellar material or a magnetar with a magnetic field of Bp∼1.3 × 1013 G, and initial period of Pspin∼1.8 ms. From the nebular spectrum modelling we infer that SN 2018hti likely results from the explosion of a ∼40M⊙ progenitor star. © 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.enSupernovae: generalSupernovae: individual: SN 2018htiSupernovaeCircumstellar materialsLight curvesMagnetarsMagnetic-fieldPhysical parametersRisetimesSpectra modelingSupernovae: individual: sn 1987aClose, bright, and boxy: the superluminous SN 2018htiArtículohttps://creativecommons.org/licenses/by/4.0/deed.es10.1093/mnras/stac744