An Upper Limit on the Mass of the Circumplanetary Disk for DH Tau b
Cargando...
Archivos
Fecha
2017-06
Profesor/a Guía
Facultad/escuela
Idioma
en
Título de la revista
ISSN de la revista
Título del volumen
Editor
Institute of Physics Publishing
Nombre de Curso
Licencia CC
Licencia CC
Resumen
DH Tau is a young (sim;1 Myr) classical T Tauri star. It is one of the few young PMS stars known to be associated with a planetary mass companion, DH Tau b, orbiting at large separation and detected by direct imaging. DH Tau b is thought to be accreting based on copious Ha emission and exhibits variable Paschen Beta emission. NOEMA observations at 230 GHz allow us to place constraints on the disk dust mass for both DH Tau b and the primary in a regime where the disks will appear optically thin. We estimate a disk dust mass for the primary, DH Tau A of 17.2 ± 1.7 MÅ, which gives a disk to star mass ratio of 0.014 (assuming the usual gas to dust mass ratio of 100 in the disk). We find a conservative disk dust mass upper limit of 0.42M⊕ for DH Tau b, assuming that the disk temperature is dominated by irradiation from DH Tau b itself. Given the environment of the circumplanetary disk, variable illumination from the primary or the equilibrium temperature of the surrounding cloud would lead to even lower disk mass estimates. A MCFOST radiative transfer model, including heating of the circumplanetary disk by DH Tau b and DH Tau A, suggests that a mass-averaged disk temperature of 22 K is more realistic, resulting in a dust disk mass upper limit of 0.09M⊕ for DH Tau b. We place DH Tau b in context with similar objects and discuss the consequences for planet formation models.
Notas
Indexación: Scopus.
Palabras clave
Circumstellar matter, Planetary systems, Stars: individual (DH Tau)
Citación
Astronomical Journal. Volume 154, Issue 1, July 2017, Article number 26