Multiband study of RX J0838-2827 and XMM J083850.4-282759: A new asynchronous magnetic cataclysmic variable and a candidate transitional millisecond pulsar

Cargando...
Miniatura
Fecha
2017-11
Profesor/a Guía
Facultad/escuela
Idioma
en
Título de la revista
ISSN de la revista
Título del volumen
Editor
Oxford University Press
Nombre de Curso
Licencia CC
Licencia CC
Resumen
In a search for the counterpart to the Fermi-LAT source 3FGL J0838.8-2829, we performed a multiwavelength campaign: in the X-ray band with Swift and XMM-Newton; in the infrared and optical with OAGH, ESO-NTT and IAC80; and in the radio with ATCA observations. We also used archival hard X-ray data obtained by INTEGRAL. We report on three X-ray sources consistent with the position of the Fermi-LAT source.We confirm the identification of the brightest object, RX J0838-2827, as a magnetic cataclysmic variable that we recognize as an asynchronous system (not associated with the Fermi-LAT source). RX J0838-2827 is extremely variable in the X-ray and optical bands, and timing analysis reveals the presence of several periodicities modulating its X-ray and optical emission. The most evident modulations are interpreted as being caused by the binary system orbital period of ~1.64 h and the white dwarf spin period of ~1.47 h. A strong flux modulation at ~15 h is observed at all energy bands, consistent with the beat frequency between spin and orbital periods. Optical spectra show prominent Hß, He I and He II emission lines that are Doppler-modulated at the orbital period and at the beat period. Therefore, RX J0838-2827 accretes through a disc-less configuration and could be either a strongly asynchronous polar or a rare example of a pre-polar system on its way to reaching synchronism. Regarding the other two X-ray sources, XMM J083850.4-282759 showed a variable X-ray emission, with a powerful flare lasting for ~600 s, similar to what is observed in transitional millisecond pulsars during the subluminous disc state: this observation possibly means that this source can be associated with the Fermi-LAT source. © 2017 The Authors.
Notas
Indexación: Scopus.
Palabras clave
Accretion, accretion discs, Novae, cataclysmic variables, Pulsars: general, White dwarfs, X-rays: individual: RX J0838-2827, X-rays: individual: XMM J083850.4-282759
Citación
Monthly Notices of the Royal Astronomical Society, 471(3), pp. 2902-2916.
DOI
Link a Vimeo