Superforms in six-dimensional superspace

Cargando...
Miniatura
Fecha
2016
Profesor/a Guía
Facultad/escuela
Idioma
en
Título de la revista
ISSN de la revista
Título del volumen
Editor
Springer
Nombre de Curso
Licencia CC
Licencia CC
Resumen
We investigate the complex of differential forms in curved, six-dimensional, N = (1, 0) superspace. The superconformal group acts on this complex by super-Weyl transformations. An ambi-twistor-like representation of a second conformal group arises on a pure spinor subspace of the cotangent space. The p-forms are defined by super-Weylcovariant tensor fields on this pure spinor subspace. The on-shell dynamics of such fields is superconformal. We construct the superspace de Rham complex by successively obstructing the closure of forms. We then extend the analysis to composite forms obtained by wedging together forms of lower degree. Finally, we comment on applications to integration in curved superspace and propose a superspace formulation of the abelian limit of the non-abelian tensor hierarchy of N = (1, 0) superconformal models.
Notas
Indexación: Web of Science
Palabras clave
Superspaces, Differential and Algebraic Geometry, Extended Supersymmetry, Supergravity Models, YANG-MILLS THEORY, 6 DIMENSIONS, HARMONIC SUPERSPACE, TENSOR MULTIPLET, SUPERFIELDS, GEOMETRY, SUPERMULTIPLETS, SUPERMANIFOLDS, SUPERSYMMETRY
Citación
JOURNAL OF HIGH ENERGY PHYSICS, (5)
DOI
Link a Vimeo