Examinando por Autor "Abrigo, J."
Mostrando 1 - 4 de 4
Resultados por página
Opciones de ordenación
Ítem Angiotensin-(1-7) attenuates disuse skeletal muscle atrophy in mice via its receptor, Mas(Universidad Andrés Bello, 2016-04) Morales, M.G.; Abrigo, J.; Acuna, M.J.; Santos, R.A.; Bader, M.; Brandan, E.; Simon, F.; Olguin, H.; Cabrera, D.; Cabello-Verrugio, C.Immobilization is a form of disuse characterized by a loss of strength and muscle mass. Among the main features are decreased IGF-1/Akt signalling and increased ubiquitin-proteasome pathway signalling, which induce greater myosin heavy chain degradation. Activation of the classical renin-angiotensin system (RAS) causes deleterious effects in skeletal muscle, including muscle wasting. In contrast, angiotensin-(1-7) [Ang-(1-7)], a peptide of the non-classical RAS, produces beneficial effects in skeletal muscle. However, the role of Ang-(1-7) in skeletal muscle disuse atrophy and independent of classical RAS activation has not been evaluated. Therefore, we assessed the functions of Ang-(1-7) and the Mas receptor in disuse muscle atrophy in vivo using unilateral cast immobilization of the hind limb in male, 12-week-old wild-type (WT) and Mas-knockout (Mas KO) mice for 1 and 14 days. Additionally, we evaluated the participation of IGF-1/IGFR-1/Akt signalling and ubiquitin-proteasome pathway expression on the effects of Ang-(1-7) immobilization-induced muscle atrophy. Our results found that Ang-(1-7) prevented decreased muscle strength and reduced myofiber diameter, myosin heavy chain levels, and the induction of atrogin-1 and MuRF-1 expressions, all of which normally occur during immobilization. Analyses indicated that Ang-(1-7) increases IGF-1/IGFR-1/Akt pathway signalling through IGFR-1 and Akt phosphorylation, and the concomitant activation of two downstream targets of Akt, p70S6K and FoxO3. These anti-atrophic effects of Ang-(1-7) were not observed in Mas KO mice, indicating crucial participation of the Mas receptor. This report is the first to propose anti-atrophic effects of Ang-(1-7) via the Mas receptor and the participation of the IGF-1/IGFR-1/Akt/p70S6K/FoxO3 mechanism in disuse skeletal muscle atrophy.Ítem Protective effect of angiotensin 1–7 on sarcopenia induced by chronic liver disease in mice(MDPI AG, 2020-04) Aguirre, F.; Abrigo, J.; Gonzalez, F.; Gonzalez, A.; Simon, F.; Cabello-Verrugio, C.Sarcopenia associated with chronic liver disease (CLD) is one of the more common extrahepatic features in patients with these pathologies. Among the cellular alterations observed in the muscle tissue under CLD is the decline in the muscle strength and function, as well as the increased fatigue. Morphological changes, such as a decrease in the fiber diameter and transition in the fiber type, are also reported. At the molecular level, sarcopenia for CLD is characterized by: (i) a decrease in the sarcomeric protein, such as myosin heavy chain (MHC); (ii) an increase in the ubiquitin–proteasome system markers, such as atrogin-1/MAFbx1 and MuRF-1/TRIM63; (iii) an increase in autophagy markers, such as LC3II/LC3I ratio. Among the regulators of muscle mass is the renin-angiotensin system (RAS). The non-classical axis of RAS includes the Angiotensin 1–7 [Ang-(1-7)] peptide and its receptor Mas, which in skeletal muscle has anti-atrophic effect in models of muscle wasting induced by immobilization, lipopolysaccharide, myostatin or angiotensin II. In this paper, we evaluated the effect of Ang-(1-7) on the sarcopenia by CLD in a murine model induced by the 5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) hepatotoxin administered through diet. Our results show that Ang-(1-7) administration prevented the decline of the function and strength of muscle and increased the fatigue detected in the DDC-fed mice. Besides, we observed that the decreased fiber diameter and MHC levels, as well as the transition of fiber types, were all abolished by Ang-(1-7) in mice fed with DDC. Finally, Ang-(1-7) can decrease the atrogin-1 and MuRF-1 expression as well as the autophagy marker in mice treated with DDC. Together, our data support the protective role of Ang-(1-7) on the sarcopenia by CLD in mice. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.Ítem Somatotropic axis dysfunction in non-alcoholic fatty liver disease: Beneficial hepatic and systemic effects of hormone supplementation(MDPI AG, 2018-05) Cabrera, D.; Cabello-Verrugio, C.; Solís, N.; Martín, D.S.; Cofré, C.; Pizarro, M.; Arab, J.P.; Abrigo, J.; Campos, F.; Irigoyen, B.; Carrasco-Avino, G.; Bezares, K.; Riquelme, V.; Riquelme, A.; Arrese, M.; Barrera, F.Background: Somatotropic axis dysfunction associated with non-alcoholic fatty liver disease (NAFLD) has potential multisystemic detrimental effects. Here, we analysed the effects of growth hormone (GH) and insulin-like growth factor-1 (IGF-1) supplementation on liver histology, adipokine profile and muscle function in an NAFLD model. Methods: C57BL/6 mice were fed with a high fat diet (HFD) for 12 weeks and were separated into three groups treated for 4 weeks with: (1) High fat diet (HFD) (n = 10); (2) HFD + GH 9 μg/g/d (n = 10); (3) HFD + IGF-1 0.02 μg/g/d (n = 9). A control group fed a chow diet was included (n = 6). Liver histology, liver triglycerides content, serum alanine aminotransferase (ALT) activity, adiponectin and leptin serum levels, in vivo muscle strength, tetanic force and muscle fibre cross-sectional area (CSA) were measured. Results: HFD + GH and HFD + IGF-1 groups showed significantly lower ALT activity compared to HFD (p < 0.01). Liver triglyceride content in HFD + GH was decreased compared to HFD (p < 0.01). Histologic steatosis score was increased in HFD and HFD + GH group (p < 0.01), whereas HFD + IGF-1 presented no difference compared to the chow group (p = 0.3). HFD + GH group presented lower serum leptin and adiponectin levels compared to HFD. GH and IGF-1 supplementation therapy reverted HFD-induced reduction in muscle strength and CSA (sarcopenia). Conclusions: GH and IGF-1 supplementation induced significant improvement in liver steatosis, aminotransferases and sarcopenia in a diet-induced NAFLD model. © 2018 by the authors. Licensee MDPI, Basel, Switzerland.Ítem The complex of PAMAM-OH dendrimer with Angiotensin (1–7) prevented the disuse-induced skeletal muscle atrophy in mice(Dove Medical Press Ltd., 2017-03) Márquez-Miranda, V.; Abrigo, J.; Rivera, J.C.; Araya-Durán, I.; Aravena, J.; Simon, F.; Pacheco, N.; González-Nilo, F.D.; Cabello-Verrugio, C.Angiotensin (1–7) (Ang-(1–7)) is a bioactive heptapeptide with a short half-life and has beneficial effects in several tissues – among them, skeletal muscle – by preventing muscle atrophy. Dendrimers are promising vehicles for the protection and transport of numerous bioactive molecules. This work explored the use of a neutral, non-cytotoxic hydroxyl-terminated poly(amidoamine) (PAMAM-OH) dendrimer as an Ang-(1–7) carrier. Bioinformatics analysis showed that the Ang-(1–7)-binding capacity of the dendrimer presented a 2:1 molar ratio. Molecular dynamics simulation analysis revealed the capacity of neutral PAMAM-OH to protect Ang-(1–7) and form stable complexes. The peptide coverage ability of the dendrimer was between ~50% and 65%. Furthermore, an electrophoretic mobility shift assay demonstrated that neutral PAMAM-OH effectively bonded peptides. Experimental results showed that the Ang-(1–7)/PAMAM-OH complex, but not Ang-(1–7) alone, had an anti-atrophic effect when administered intraperitoneally, as evaluated by muscle strength, fiber diameter, myofibrillar protein levels, and atrogin-1 and MuRF-1 expressions. The results of the Ang-(1–7)/PAMAM-OH complex being intraperitoneally injected were similar to the results obtained when Ang-(1–7) was systemically administered through mini-osmotic pumps. Together, the results suggest that Ang-(1–7) can be protected for PAMAM-OH when this complex is intraperitoneally injected. Therefore, the Ang-(1–7)/PAMAM-OH complex is an efficient delivery method for Ang-(1–7), since it improves the anti-atrophic activity of this peptide in skeletal muscle.