Examinando por Autor "Almeida, Andréa Miyasaka"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Differential physiological responses in rice upon exposure to excess distinct iron forms(Kluwer Academic Publishers, 2015-06) Müller, Caroline; Kuki, Kacilda Naomi; Pinheiro, Daniel Teixeira; de Souza, Laíse Rosado; Siqueira Silva, Advânio Inácio; Loureiro, Marcelo Ehlers; Oliva, Marco Antonio; Almeida, Andréa MiyasakaBackground and aims: Rice can be cultivated in highlands, which can expose it to iron deficiency, or under irrigation, which can lead to iron toxicity and lower productivity. This study aimed to investigate the strategies used by rice plants under different divalent and trivalent sources of iron excess. Methods: Rice plants from a lowland and upland cultivar were grown in nutrient solution with toxic concentrations of ferrous or ferric iron. A mineral nutrient quantification and anatomical analysis were performed on leaves and roots. Physiological damage was assessed by leaf photochemical parameters and lipid peroxidation. Expression levels of genes related to iron homeostasis were analyzed. Results: More pronounced nutritional deficiencies, oxidative stress and physiological damage were observed in plants exposed to toxic levels of ferrous iron. Ferritin expression increased in leaves of both cultivars under ferrous or ferric iron excess. Conclusions: We showed that sulfate iron was more toxic to the two rice cultivars even though this iron source was less translocated in the plant. Trivalent iron complexed to citrate is easily translocated through rice plants, but it is less toxic than the divalent iron. Rice plants are able to cope with this iron overload by keeping photosynthetic apparatus working properly. © 2015, The Author(s).Ítem DNA methylation and small interference RNAs participate in the regulation of MADS-box genes involved in dormancy in sweet cherry (Prunus avium L.)(Oxford University Press, 2017-12) Rothkegel, Karin; Sánchez, Evelyn; Montes, Christian; Greve, Macarena; Tapia, Sebastián; Bravo, Soraya; Prieto, Humberto; Almeida, Andréa MiyasakaEpigenetic modifications can yield information about connections between genotype, phenotype variation and environmental conditions. Bud dormancy release in temperate perennial fruit trees depends on internal and environmental signals such as cold accumulation and photoperiod. Previous investigations have noted the participation of epigenetic mechanisms in the control of this physiological process. We examined whether epigenetic modifications were modulated in MADS-box genes, potential candidates for the regulation of bud dormancy and flowering in sweet cherry (Prunus avium L.). We identified and cloned two MADS-box genes homologous to the already-characterized dormancy regulators DORMANCY-ASSOCIATED MADS-box (DAM3 and DAM5) from Prunus persica (L.) Batsch. Bisulfite sequencing of the identified genes (PavMADS1 and PavMADS2), Methylated DNA Immunoprecipitation and small RNA deep sequencing were performed to analyze the presence of DNA methylations that could be guided by non-coding RNAs in the floral buds exposed to differential chilling hours. The results obtained reveal an increase in the level of DNA methylation and abundance of matching small interference RNAs (siRNAs) in the promoter of PavMADS1 when the chilling requirement is complete. For the first intron and 5′ UTR of PavMADS1, de novo DNA methylation could be associated with the increase in the abundance of 24-nt siRNA matching the promoter area. Also, in the second large intron of PavMADS1, maintenance DNA methylation in all cytosine contexts is associated with the presence of homologous siRNAs in that zone. For PavMADS2, only maintenance methylation was present in the CG context, and no matching siRNAs were detected. Silencing of PavMADS1 and PavMADS2 coincided with an increase in Flowering Locus T expression during dormancy. In conclusion, DNA methylations and siRNAs appear to be involved in the silencing of PavMADS1 during cold accumulation and dormancy release in sweet cherry. © The Author 2017. Published by Oxford University Press. All rights reserved.