Examinando por Autor "Anastasiou, G."
Mostrando 1 - 5 de 5
Resultados por página
Opciones de ordenación
Ítem Counterterms, Kounterterms, and the variational problem in AdS gravity(Springer, 2020-08) Anastasiou, G.; Miskovic, O.; Olea, R.; Papadimitriou, I.We show that the Kounterterms for pure AdS gravity in arbitrary even dimensions coincide with the boundary counterterms obtained through holographic renormalization if and only if the boundary Weyl tensor vanishes. In particular, the Kounterterms lead to a well posed variational problem for generic asymptotically locally AdS manifolds only in four dimensions. We determine the exact form of the counterterms for conformally flat boundaries and demonstrate that, in even dimensions, the Kounterterms take exactly the same form. This agreement can be understood as a consequence of Anderson’s theorem for the renormalized volume of conformally compact Einstein 4-manifolds and its higher dimensional generalizations by Albin and Chang, Qing and Yang. For odd dimensional asymptotically locally AdS manifolds with a conformally flat boundary, the Kounterterms coincide with the boundary counterterms except for the logarithmic divergence associated with the holographic conformal anomaly, and finite local terms. © 2020, The Author(s).Ítem Einstein-AdS action, renormalized volume/area and holographic Rényi entropies(Springer Verlag, 2018-08) Anastasiou, G.; Araya, I.J.; Arias, C.; Olea, R.We exhibit the equivalence between the renormalized volume of asymptotically anti-de Sitter (AAdS) Einstein manifolds in four and six dimensions, and their renormalized Euclidean bulk gravity actions. The action is that of Einstein gravity, where the renormalization is achieved through the addition of a single topological term. We generalize this equivalence, proposing an explicit form for the renormalized volume of higher even-dimensional AAdS Einstein manifolds. We also show that evaluating the renormalized bulk gravity action on the conically singular manifold of the replica trick results in an action principle that corresponds to the renormalized volume of the regular part of the bulk, plus the renormalized area of a codimension-2 cosmic brane whose tension is related to the replica index. Renormalized Rényi entropy of odd-dimensional holographic CFTs can thus be obtained from the renormalized area of the brane with finite tension, including the effects of its backreaction on the bulk geometry. The area computation corresponds to an extremization problem for an enclosing surface that extends to the AdS boundary, where the newly defined renormalized volume is considered. © 2018, The Author(s).Ítem Holographic correlation functions in Critical Gravity(Springer Verlag, 2017) Anastasiou, G.; Olea, R.We compute the holographic stress tensor and the logarithmic energy-momentum tensor of Einstein-Weyl gravity at the critical point. This computation is carried out performing a holographic expansion in a bulk action supplemented by the Gauss-Bonnet term with a fixed coupling. The renormalization scheme defined by the addition of this topological term has the remarkable feature that all Einstein modes are identically cancelled both from the action and its variation. Thus, what remains comes from a nonvanishing Bach tensor, which accounts for non-Einstein modes associated to logarithmic terms which appear in the expansion of the metric. In particular, we compute the holographic 1-point functions for a generic boundary geometric source.Ítem Noether–Wald energy in Critical Gravity(Elsevier B.V., 2019-01) Anastasiou, G.; Olea, R.; Rivera-Betancour, D.Criticality represents a specific point in the parameter space of a higher-derivative gravity theory, where the linearized field equations become degenerate. In 4D Critical Gravity, the Lagrangian contains a Weyl-squared term, which does not modify the asymptotic form of the curvature. The Weyl2 coupling is chosen such that it eliminates the massive scalar mode and it renders the massive spin-2 mode massless. In doing so, the theory turns consistent around the critical point. Here, we employ the Noether–Wald method to derive the conserved quantities for the action of Critical Gravity. It is manifest from this energy definition that, at the critical point, the mass is identically zero for Einstein spacetimes, what is a defining property of the theory. As the entropy is obtained from the Noether–Wald charges at the horizon, it is evident that it also vanishes for any Einstein black hole. © 2018 The Author(s)Ítem Shape dependence of renormalized holographic entanglement entropy(Springer Science and Business Media Deutschland GmbH, 2020-09) Anastasiou, G.; Moreno, J.; Olea, R.; Rivera-Betancour, D.We study the holographic entanglement entropy of deformed entangling regions in three-dimensional CFTs dual to Einstein-AdS gravity, using a renormalization scheme based on the addition of extrinsic counterterms. In this prescription, when even- dimensional manifolds are considered, the universal contribution to the entanglement entropy is identified as the renormalized volume of the Ryu-Takayanagi hypersurface, which is written as the sum of a topological and a curvature term. It is shown that the change in the renormalized entanglement entropy due to the deformation of the entangling surface is encoded purely in the curvature contribution. In turn, as the topological part is given by the Euler characteristic of the Ryu-Takayanagi surface, it remains shape independent. Exploiting the covariant character of the extrinsic counterterms, we apply the renormalization scheme for the case of deformed entangling regions in AdS4/CFT3, recovering the results found in the literature. Finally, we provide a derivation of the relation between renormalized entanglement entropy and Willmore energy. The presence of a lower bound of the latter makes manifest the relation between the AdS curvature of the Ryu-Takayanagi surface and the strong subadditivity property. © 2020, The Author(s).