Examinando por Autor "Anders, Friedrich"
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Ítem Galactic ArchaeoLogIcaL ExcavatiOns (GALILEO): II. t-SNE portrait of local fossil relics and structures(EDP Sciences, 2023-08) Ortigoza-Urdaneta, Mario; Vieira, Katherine; Fernández-Trincado, José G.; Queiroz, Anna B. A.; Barbuy, Beatriz; Beers, Timothy C.; Chiappini, Cristina; Anders, Friedrich; Minniti, Dante; Tang, BaitianBased on high-quality Apache Point Observatory Galactic Evolution Experiment (APOGEE) DR17 and Gaia DR3 data for 1742 red giants stars within 5 kpc of the Sun and not rotating with the Galactic disk (Vø < 100 km s-1), we used the nonlinear technique of unsupervised analysis t-Distributed Stochastic Neighbor Embedding (t-SNE) to detect coherent structures in the space of ten chemical-abundance ratios: [Fe/H], [O/Fe], [Mg/Fe], [Si/Fe], [Ca/Fe], [C/Fe], [N/Fe], [Al/Fe], [Mn/Fe], and [Ni/Fe]. Additionally, we obtained orbital parameters for each star using the nonaxisymmetric gravitational potential GravPot16. Seven structures are detected, including Splash, Gaia-Sausage-Enceladus (GSE), the high-α heated-disk population, N-C-O peculiar stars, and inner disk-like stars, plus two other groups that did not match anything previously reported in the literature, here named Galileo 5 and Galileo 6 (G5 and G6). These two groups overlap with Splash in [Fe/H], with G5 having a lower metallicity than G6, and they are both between GSE and Splash in the [Mg/Mn] versus [Al/Fe] plane, with G5 being in the α-rich in situ locus and G6 on the border of the α-poor in situ one. Nonetheless, their low [Ni/Fe] hints at a possible ex situ origin. Their orbital energy distributions are between Splash and GSE, with G5 being slightly more energetic than G6. We verified the robustness of all the obtained groups by exploring a large range of t-SNE parameters, applying it to various subsets of data, and also measuring the effect of abundance errors through Monte Carlo tests. © 2023 The Authors.Ítem The Open Cluster Chemical Abundances and Mapping Survey. IV. Abundances for 128 Open Clusters Using SDSS/APOGEE DR16(Institute of Physics Publishing, 2020-05) Donor, John; Frinchaboy, Peter M.; Cunha, Katia; O'connell, Julia E.; Prieto, Carlos Allende; Almeida, Andrés; Anders, Friedrich; Beaton, Rachael; Bizyaev, Dmitry; Brownstein, Joel R.; Carrera, Ricardo; Chiappini, Cristina; Cohen, Roger; García-Hernández D. A.; Geisler, Doug; Hasselquist, Sten; Jönsson, Henrik; Lane, Richard R.; Majewski, Steven R.; Minniti, Dante; Bidin, Christian Moni; Pan, Kaike; Roman-Lopes, Alexandre; Sobeck, Jennifer S.; Zasowski, GailThe Open Cluster Chemical Abundances and Mapping (OCCAM) survey aims to constrain key Galactic dynamical and chemical evolution parameters by the construction of a large, comprehensive, uniform, infrared-based spectroscopic data set of hundreds of open clusters. This fourth contribution from the OCCAM survey presents analysis using Sloan Digital Sky Survey/APOGEE DR16 of a sample of 128 open clusters, 71 of which we designate to be "high quality" based on the appearance of their color-magnitude diagram. We find the APOGEE DR16 derived [Fe/H] abundances to be in good agreement with previous high-resolution spectroscopic open cluster abundance studies. Using the high-quality sample, we measure Galactic abundance gradients in 16 elements, and find evolution of some of the [X/Fe] gradients as a function of age. We find an overall Galactic [Fe/H] versus R GC gradient of -0.068 ± 0.001 dex kpc-1 over the range of 6 < R GC < 13.9 kpc; however, we note that this result is sensitive to the distance catalog used, varying as much as 15%. We formally derive the location of a break in the [Fe/H] abundance gradient as a free parameter in the gradient fit for the first time. We also measure significant Galactic gradients in O, Mg, S, Ca, Mn, Cr, Cu, Na, Al, and K, some of which are measured for the first time. Our large sample allows us to examine four well-populated age bins in order to explore the time evolution of gradients for a large number of elements and comment on possible implications for Galactic chemical evolution and radial migration.Ítem The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar, and APOGEE-2 Data(American Astronomical Society, 2022-04-01) Abdurro'Uf; Accetta, Katherine; Aerts, Conny; Silva Aguirre, Víctor; Ahumada, Romina; Ajgaonkar, Nikhil; Filiz Ak, N.; Alam, Shadab; Allende Prieto, Carlos; Almeida, Andrés; Anders, Friedrich; Anderson, Scott F.; Andrews, Brett H.; Anguiano, Borja; Aquino-Ortíz, Erik; Aragón-Salamanca, Alfonso; Argudo-Fernández, Maria; Ata, Metin; Aubert, Marie; Avila-Reese, Vladimir; Badenes, Carles; Barbá, Rodolfo H.; Barger, Kat; Barrera-Ballesteros, Jorge K.; Beaton, Rachael L.; Beers, Timothy C.; Belfiore, Francesco; Bender, Chad F.; Bernardi, Mariangela; Bershady, Matthew A.; Beutler, Florian; Bidin, Christian Moni; Bird, Jonathan C.; Bizyaev, Dmitry; Blanc, Guillermo A.; Blanton, Michael R.; Boardman, Nicholas Fraser; Bolton, Adam S.; Boquien, Médéric; Borissova, Jura; Bovy, Jo; Brandt, W.N.; Brown, Jordan; Brownstein, Joel R.; Brusa, Marcella; Buchner, Johannes; Bundy, Kevin; Burchett, Joseph N.; Bureau, Martin; Burgasser, Adam; Cabang, Tuesday K.; Campbell, Stephanie; Cappellari, Michele; Carlberg, Joleen K.; Wanderley, Fábio Carneiro; Carrera, Ricardo; Cash, Jennifer; Chen, Yan-Ping; Chen, Wei-Huai; Cherinka, BrianThis paper documents the seventeenth data release (DR17) from the Sloan Digital Sky Surveys; the fifth and final release from the fourth phase (SDSS-IV). DR17 contains the complete release of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which reached its goal of surveying over 10,000 nearby galaxies. The complete release of the MaNGA Stellar Library accompanies this data, providing observations of almost 30,000 stars through the MaNGA instrument during bright time. DR17 also contains the complete release of the Apache Point Observatory Galactic Evolution Experiment 2 survey that publicly releases infrared spectra of over 650,000 stars. The main sample from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), as well as the subsurvey Time Domain Spectroscopic Survey data were fully released in DR16. New single-fiber optical spectroscopy released in DR17 is from the SPectroscipic IDentification of ERosita Survey subsurvey and the eBOSS-RM program. Along with the primary data sets, DR17 includes 25 new or updated value-added catalogs. This paper concludes the release of SDSS-IV survey data. SDSS continues into its fifth phase with observations already underway for the Milky Way Mapper, Local Volume Mapper, and Black Hole Mapper surveys. © 2022. The Author(s). Published by the American Astronomical Society.