Examinando por Autor "Anderson J.P."
Mostrando 1 - 9 de 9
Resultados por página
Opciones de ordenación
Ítem A long life of excess: The interacting transient SN 2017hcc(EDP Sciences, 2023-01) Moran S.; Fraser M.; Kotak R.; Pastorello A.; Benetti S.; Brennan S.J.; Gutiérrez C.P.; Kankare E.; Kuncarayakti H.; Mattila S.; Reynolds T.M.; Anderson J.P.; Brown P.J.; Campana S.; Chambers K.C.; Chen T.-W.; Della Valle M.; Dennefeld M.; Elias-Rosa N.; Galbany L.; Galindo-Guil F.J.; Gromadzki M.; Hiramatsu D.; Inserra C.; Leloudas G.; Müller-Bravo T.E.; Nicholl M.; Reguitti A.; Shahbandeh M.; Smartt S.J.; Tartaglia L.; Young D.R.In this study we present the results of a five-year follow-up campaign of the long-lived type IIn supernova SN 2017hcc, found in a spiral dwarf host of near-solar metallicity. The long rise time (57 ± 2 days, ATLAS o band) and high luminosity (peaking at -20.78 ± 0.01 mag in the ATLAS o band) point towards an interaction of massive ejecta with massive and dense circumstellar material (CSM). The evolution of SN 2017hcc is slow, both spectroscopically and photometrically, reminiscent of the long-lived type IIn, SN 2010jl. An infrared (IR) excess was apparent soon after the peak, and blueshifts were noticeable in the Balmer lines starting from a few hundred days, but appeared to be fading by around +1200 d. We posit that an IR light echo from pre-existing dust dominates at early times, with some possible condensation of new dust grains occurring at epochs ≳;+800 d. © The Authors 2023.Ítem A study in scarlet: I. Photometric properties of a sample of intermediate-luminosity red transients(EDP Sciences, 2025-03) Valerin G.; Pastorello A.; Reguitti A.; Benetti S.; Cai Y.-Z.; Chen T.-W.; Eappachen D.; Elias-Rosa N.; Fraser M.; Gangopadhyay A.; Hsiao E.Y.; Howell D.A.; Inserra C.; Izzo L.; Jencson J.; Kankare E.; Kotak R.; Mazzali P.A.; Misra K.; Pignata G.; Prentice S.J.; Sand D.J.; Smartt S.J.; Stritzinger M.D.; Tartaglia L.; Valenti S.; Anderson J.P.; Andrews J.E.; Amaro R.C.; Brennan S.; Bufano F.; Callis E.; Cappellaro E.; Dastidar R.; Della Valle M.; Fiore A.; Fulton M.D.; Galbany L.; Heikkilä T.; Hiramatsu D.; Karamehmetoglu E.; Kuncarayakti H.; Leloudas G.; Lundquist M.; Mccully C.; Müller-Bravo T.E.; Nicholl M.; Ochner P.; Padilla Gonzalez E.; Paraskeva E.; Pellegrino C.; Rau A.; Reichart D.E.; Reynolds T.M.; Roy R.; Salmaso I.; Singh M.; Turatto M.; Tomasella L.; Wyatt S.Aims. We investigate the photometric characteristics of a sample of intermediate-luminosity red transients (ILRTs), a class of elusive objects with peak luminosity between that of classical novae and standard supernovae. Our goal is to provide a stepping stone in the path to reveal the physical origin of such events, thanks to the analysis of the datasets collected. Methods. We present the multi-wavelength photometric follow-up of four ILRTs, namely NGC 300 2008OT-1, AT 2019abn, AT 2019ahd, and AT 2019udc. Through the analysis and modelling of their spectral energy distribution and bolometric light curves, we inferred the physical parameters associated with these transients. Results. All four objects display a single-peaked light curve which ends in a linear decline in magnitudes at late phases. A flux excess with respect to a single blackbody emission is detected in the infrared domain for three objects in our sample, a few months after maximum. This feature, commonly found in ILRTs, is interpreted as a sign of dust formation. Mid-infrared monitoring of NGC 300 2008OT-1 761 days after maximum allowed us to infer the presence of ∼10-3-10-5 M⊙ of dust, depending on the chemical composition and the grain size adopted. The late-time decline of the bolometric light curves of the considered ILRTs is shallower than expected for 56Ni decay, hence requiring an additional powering mechanism. James Webb Space Telescope observations of AT 2019abn prove that the object has faded below its progenitor luminosity in the mid-infrared domain, five years after its peak. Together with the disappearance of NGC 300 2008OT-1 in Spitzer images seven years after its discovery, this supports the terminal explosion scenario for ILRTs. With a simple semi-analytical model we tried to reproduce the observed bolometric light curves in the context of a few solar masses ejected at few 103 km s-1 and enshrouded in an optically thick circumstellar medium. © The Authors 2025.Ítem An outflow powers the optical rise of the nearby, fast-evolving tidal disruption event AT2019qiz(Oxford University Press, 2020-11) Nicholl M.; Wevers T.; Oates S.R.; Alexander K.D.; Leloudas G.; Onori F.; Jerkstrand A.; Gomez S.; Campana S.; Arcavi I.; Charalampopoulos P.; Gromadzki M.; Ihanec N.; Jonker P.G.; Lawrence A.; Mandel I.; Schulze S.; Short P.; Burke J.; McCully C.; Hiramatsu D.; Howell D.A.; Pellegrino C.; Abbot H.; Anderson J.P.; Berger E.; Blanchard P.K.; Cannizzaro G.; Chen T.-W.; Dennefeld M.; Galbany L.; Gonzalez-Gaitan S.; Hosseinzadeh G.; Inserra C.; Irani I.; Kuin P.; Muller-Bravo T.; Pineda J.; Ross N.P.; Roy R.; Smartt S.J.; Smith K.W.; Tucker B.; Wyrzykowski L.; Young D.R.At 66 Mpc, AT2019qiz is the closest optical tidal disruption event (TDE) to date, with a luminosity intermediate between the bulk of the population and the faint-and-fast event iPTF16fnl. Its proximity allowed a very early detection and triggering of multiwavelength and spectroscopic follow-up well before maximum light. The velocity dispersion of the host galaxy and fits to the TDE light curve indicate a black hole mass ~106M⊙, disrupting a star of ~1M⊙. By analysing our comprehensive UV, optical, and X-ray data, we show that the early optical emission is dominated by an outflow, with a luminosity evolution L α t2, consistent with a photosphere expanding at constant velocity (≥2000 km s-1), and a line-forming region producing initially blueshifted H and He II profiles with v = 3000-10000 km s-1. The fastest optical ejecta approach the velocity inferred from radio detections (modelled in a forthcoming companion paper from K. D. Alexander et al.), thus the same outflow may be responsible for both the fast optical rise and the radio emission - the first time this connection has been observed in a TDE. The light-curve rise begins 29 ± 2 d before maximum light, peaking when the photosphere reaches the radius where optical photons can escape. The photosphere then undergoes a sudden transition, first cooling at constant radius then contracting at constant temperature. At the same time, the blueshifts disappear from the spectrum and Bowen fluorescence lines (N III) become prominent, implying a source of far-UV photons, while the X-ray light curve peaks at ~1041erg s-1. Assuming that these X-rays are from prompt accretion, the size and mass of the outflow are consistent with the reprocessing layer needed to explain the large optical to X-ray ratio in this and other optical TDEs, possibly favouring accretion-powered over collision-powered outflow models. © 2020 Oxford University Press. All rights reserved.Ítem Discovery and follow-up of ASASSN-19dj: An X-ray and UV luminous TDE in an extreme post-starburst galaxy(Oxford University Press, 2021-01-01) Hinkle, Jason T; Holoien T.W.; Auchettl K.; Shappee B.J.; Neustadt J.M.M.; Payne A.V.; Brown J.S.; Kochanek C.S.; Stanek K.Z.; Graham M.J.; Tucker M.A.; Do A.; Anderson J.P.; Bose S.; Chen P.; Coulter D.A.; Dimitriadis G.; Dong, Subo; Foley R.J.; Huber M.E.; Hung T.; Kilpatrick C.D.; Pignata G.; Piro A.L.; Rojas-Bravo C.; Siebert M.R.; Stalder B.; Thompson, Todd A.; Tonry J.L.; Vallely P.J.; Wisniewski J.P.We present observations of ASASSN-19dj, a nearby tidal disruption event (TDE) discovered in the post-starburst galaxy KUG 0810+227 by the All-Sky Automated Survey for Supernovae (ASAS-SN) at a distance of d ≃ 98 Mpc. We observed ASASSN-19dj from -21 to 392 d relative to peak ultraviolet (UV)/optical emission using high-cadence, multiwavelength spectroscopy and photometry. From the ASAS-SN g-band data, we determine that the TDE began to brighten on 2019 February 6.8 and for the first 16 d the rise was consistent with a flux α2 power law. ASASSN-19dj peaked in the UV/optical on 2019 March 6.5 (MJD = 58548.5) at a bolometric luminosity of L = (6.2 ± 0.2) × 1044 erg s-1. Initially remaining roughly constant in X-rays and slowly fading in the UV/optical, the X-ray flux increased by over an order of magnitude ∼225 d after peak, resulting from the expansion of the X-ray emitting region. The late-time X-ray emission is well fitted by a blackbody with an effective radius of ∼1 × 1012 cm and a temperature of ∼6 × 105 K. The X-ray hardness ratio becomes softer after brightening and then returns to a harder state as the X-rays fade. Analysis of Catalina Real-Time Transient Survey images reveals a nuclear outburst roughly 14.5 yr earlier with a smooth decline and a luminosity of LV ≥ 1.4 × 1043 erg s-1, although the nature of the flare is unknown. ASASSN-19dj occurred in the most extreme post-starburst galaxy yet to host a TDE, with Lick HδA = 7.67 ± 0.17 Å.Ítem Investigating the diversity of supernovae type Iax: A MUSE and NOT spectroscopic study of their environments(Oxford University Press, 2018) Lyman J.D.; Taddia F.; Stritzinger M.D.; Galbany L.; Leloudas G.; Anderson J.P.; Eldridge J.J.; James P.A.; Krühler T.; Levan A.J.; Pignata G.; Stanway E.R.SN 2002cx-like Type Ia supernovae (also known as SNe Iax) represent one of the most numerous peculiar SN classes. They differ from normal SNe Ia by having fainter peak magnitudes, faster decline rates and lower photospheric velocities, displaying awide diversity in these properties. We present both integral-field and long-slit visual-wavelength spectroscopy of the host galaxies and explosion sites of SNe Iax to provide constraints on their progenitor formation scenarios. The SN Iax explosion-site metallicity distribution is similar to that of core-collapse SNe and metal poor compared to either normal SNe Ia or SN 1991T-like events. Fainter members, speculated to form distinctly from brighter SN Iax, are found at a range of metallicities, extending to very metal poor environments. Although the SN Iax explosion-sites' ages and star formation rates are comparatively older and less intense than the distribution of star-forming regions across their host galaxies, we confirm the presence of young stellar populations (SPs) at explosion environments for most SNe Iax, expanded here to a larger sample. Ages of the young SPs (several × 107 to 108 yr) are consistent with predictions for young thermonuclear and electron-capture SN progenitors. The lack of extremely young SPs at the explosion sites disfavours very massive progenitors such as Wolf-Rayet explosions with significant fallback. We find weak ionized gas in the only SN Iax host without obvious signs of star formation. The source of the ionization remains ambiguous but appears unlikely to be mainly due to young, massive stars. © 2017 The Authors.Ítem Optical and near-infrared observations of the nearby SN Ia 2017cbv(IOP Publishing Ltd, 2020-11) Wang L.; Contreras C.; Hu M.; Hamuy M.A.; Hsiao E.Y.; Sand D.J.; Anderson J.P.; Ashall C.; Burns C.R.; Chen J.; Diamond T.R.; Davis S.; Förster F.; Galbany L.; González-Gaitán S.; Gromadzki M.; Hoeflich P.; Li W.; Marion G.H.; Morrell N.; Pignata G.; Prieto J.L.; Phillips M.M.; Shahbandeh M.; Suntzeff N.B.; Valenti S.; Wang L.; Wang X.; Young D.R.; Yu L.; Zhang J.Supernova (SN) 2017cbv in NGC 5643 is one of a handful of Type Ia supernovae (SNe Ia) reported to have excess blue emission at early times. This paper presents extensive BVRIYJHKs-band light curves of SN 2017cbv, covering the phase from -16 to +125 days relative to B-band maximum light. The SN 2017cbv reached a B-band maximum of 11.710 ± 0.006mag, with a postmaximum magnitude decline of Δm15(B) = 0.990 ± 0.013 mag. The SN suffered no host reddening based on Phillips intrinsic color, the Lira-Phillips relation, and the CMAGIC diagram. By employing the CMAGIC distance modulus μ = 30.58 ± 0.05 mag and assuming H0 = 72 km s-1 Mpc-1, we found that 0.73M⊙ 56Ni was synthesized during the explosion of SN 2017cbv, which is consistent with estimates using reddening- and distance-free methods via the phases of the secondary maximum of the near-IR- (NIR-) band light curves. We also present 14 NIR spectra from -18 to +49 days relative to the B-band maximum light, providing constraints on the amount of swept-up hydrogen from the companion star in the context of the single degenerate progenitor scenario. No Paβ emission feature was detected from our postmaximum NIR spectra, placing a hydrogen mass upper limit of 0.1 M⊙. The overall optical/NIR photometric and NIR spectral evolution of SN 2017cbv is similar to that of a normal SN Ia, even though its early evolution is marked by a flux excess not seen in most other wellobserved normal SNe Ia. We also compare the exquisite light curves of SN 2017cbv with some Mch delayed detonation models and sub-Mch double detonation models. © 2020. The American Astronomical Society.Ítem Photometry and spectroscopy of the Type Icn supernova 2021ckj: The diverse properties of the ejecta and circumstellar matter of Type Icn supernovae(EDP Sciences, 2023-05) Nagao T.; Kuncarayakti H.; Maeda K.; Moore T.; Pastorello A.; Mattila S.; Uno K.; Smartt S.J.; Sim S.A.; Ferrari L.; Tomasella L.; Anderson J.P.; Chen T.-W.; Galbany L.; Gao H.; Gromadzki M.; Gutiérrez C.P.; Inserra C.; Kankare E.; Magnier E.A.; Müller-Bravo T.E.; Reguitti A.; Young D.R.We present photometric and spectroscopic observations of the Type Icn supernova (SN) 2021ckj. This rare type of SNe is characterized by a rapid evolution and high peak luminosity as well as narrow lines of highly ionized carbon at early phases, implying an interaction with hydrogen- and helium-poor circumstellar matter (CSM). SN 2021ckj reached a peak brightness of ~-20 mag in the optical bands, with a rise time and a time above half maximum of ~4 and ~10 days, respectively, in the g and cyan bands. These features are reminiscent of those of other Type Icn SNe (SNe 2019hgp, 2021csp, and 2019jc), with the photometric properties of SN 2021ckj being almost identical to those of SN 2021csp. Spectral modeling of SN 2021ckj reveals that its composition is dominated by oxygen, carbon, and iron group elements, and the photospheric velocity at peak is ~10000 km s-1. Modeling the spectral time series of SN 2021ckj suggests aspherical SN ejecta. From the light curve (LC) modeling applied to SNe 2021ckj, 2019hgp, and 2021csp, we find that the ejecta and CSM properties of Type Icn SNe are diverse. SNe 2021ckj and 2021csp likely have two ejecta components (an aspherical high-energy component and a spherical standard-energy component) with a roughly spherical CSM, while SN 2019hgp can be explained by a spherical ejecta-CSM interaction alone. The ejecta of SNe 2021ckj and 2021csp have larger energy per ejecta mass than the ejecta of SN 2019hgp. The density distribution of the CSM is similar in these three SNe, and is comparable to those of Type Ibn SNe. This may imply that the mass-loss mechanism is common between Type Icn (and also Type Ibn) SNe. The CSM masses of SN 2021ckj and SN 2021csp are higher than that of SN 2019hgp, although all these values are within those seen in Type Ibn SNe. The early spectrum of SN 2021ckj shows narrow emission lines from C II and C III, without a clear absorption component, in contrast with that observed in SN 2021csp. The similarity of the emission components of these lines implies that the emitting regions of SNe 2021ckj and 2021csp have similar ionization states, and thus suggests that they have similar properties as the ejecta and CSM, which is also inferred from the LC modeling. Taking the difference in the strength of the absorption features into account, this heterogeneity may be attributed to viewing angle effects in otherwise common aspherical ejecta. In particular, in this scenario SN 2021ckj is observed from the polar direction, while SN 2021csp is seen from an off-axis direction. This is also supported by the fact that the late-time spectra of SNe 2021ckj and 2021csp show similar features but with different line velocities. © 2023 EDP Sciences. All rights reserved.Ítem SN 2017ivv: Two years of evolution of a transitional Type II supernova(Oxford University Press, 2020-11) Gutiérrez C.P.; Pastorello A.; Jerkstrand A.; Galbany L.; Sullivan M.; Anderson J.P.; Taubenberger S.; Kuncarayakti H.; González-Gaitán S.; Wiseman P.; Inserra C.; Fraser M.; Maguire K.; Smartt S.; Müller-Bravo T.E.; Arcavi I.; Benetti S.; Bersier D.; Bose S.; Bostroem K.A.; Burke J.; Chen P.; Chen T.-W.; Della Valle M.; Dong S.; Gal-Yam A.; Gromadzki M.; Hiramatsu D.; Holoien T.W.-S.; Hosseinzadeh G.; Howell D.A.; Kankare E.; Kochanek C.S.; McCully C.; Nicholl M.; Pignata G.; Prieto J.L.; Shappee B.; Taggart K.; Tomasella L.; Valenti S.; Young D.R.We present the photometric and spectroscopic evolution of the Type II supernova (SN II) SN 2017ivv (also known as ASASSN- 17qp). Located in an extremely faint galaxy (Mr =-10.3 mag), SN 2017ivv shows an unprecedented evolution during the 2 yr of observations. At early times, the light curve shows a fast rise (~6-8 d) to a peak of Mmaxg = -17.84 mag, followed by a very rapid decline of 7.94 ± 0.48 mag per 100 d in the V band. The extensive photometric coverage at late phases shows that the radioactive tail has two slopes, one steeper than that expected from the decay of 56Co (between 100 and 350 d), and another slower (after 450 d), probably produced by an additional energy source. From the bolometric light curve, we estimated that the amount of ejected 56Ni is ~0.059 ± 0.003M⊙. The nebular spectra of SN 2017ivv show a remarkable transformation that allows the evolution to be split into three phases: (1) Ha strong phase ([removed]500 d).We find that the nebular analysis favours a binary progenitor and an asymmetric explosion. Finally, comparing the nebular spectra of SN 2017ivv to models suggests a progenitor with a zero-age main-sequence mass of 15-17M⊙. © 2020 The Author(s).Ítem The fast rise of the unusual type IIL/IIb SN 2018ivc(EDP Sciences, 0024-12) Reguitti A; Dastidar R.; Pignata G; Maeda K.; Moriya T.J.; Kuncarayakti H.; Rodríguez Ó; Bersten M.; Anderson J.P.; Charalampopoulos P.; Fraser M; Gromadzki M.We present an analysis of the photometric and spectroscopic dataset of the type II supernova (SN) 2018ivc in the nearby (10 Mpc) galaxy Messier 77. Thanks to our high-cadence data, we observed the SN rising very rapidly by nearly three magnitudes in five hours (or 18 mag d- 1). The r-band light curve presents four distinct phases: the maximum light, which was reached in just one day, followed by a first, rapid linear decline and a short-duration plateau. Finally, the long, slower linear decline lasted for one year. Thanks to the ensuing radio re-brightening, we were able to detect SN 2018ivc four years after the explosion. The early spectra show a blue, nearly featureless continuum, but the spectra go on to evolve rapidly; after about ten days, a prominent Hα line starts to emerge, characterised by a peculiar profile. However, the spectra are heavily contaminated by emission lines from the host galaxy. The He I lines, namely λλ5876,7065, are also strong. In addition, strong absorption from the Na I doublet is evident and indicative of a non-negligible internal reddening. From its equivalent width, we derived a lower limit on the host reddening of AV ≲ 1.5 mag. From the Balmer decrement and a match of the B- V colour curve of SN 2018ivc to that of the comparison objects, we obtained a host reddening of AV ≲ 3.0 mag. The spectra are similar to those of SNe II, but with strong He lines. Given the peculiar light curve and spectral features, we suggest SN 2018ivc could be a transitional object between the type IIL and type IIb SNe classes. In addition, we found signs of an interaction with the circum-stellar medium (CSM) in the light curve, also making SN 2018ivc an interacting event. Finally, we modelled the early multi-band light curves and photospheric velocity of SN 2018ivc to estimate the physical parameters of the explosion and CSM. © The Authors 2024.