Examinando por Autor "Andrade, Catalina A."
Mostrando 1 - 4 de 4
Resultados por página
Opciones de ordenación
Ítem Contribution of viral and bacterial infections to senescence and immunosenescence(Frontiers Media SA, 2023) Reyes, Antonia; Ortiz, Gerardo; Duarte, Luisa F.; Fernández, Christian; Hernández-Armengol, Rosario; Palacios, Pablo A.; Prado, Yolanda; Andrade, Catalina A.; Rodriguez-Guilarte, Linmar; Kalergis, Alexis M.; Simon, Felipe; Carreño, Leandro J.; Riedel, Claudia A.; Cáceres, Mónica; González, Pablo A.Cellular senescence is a key biological process characterized by irreversible cell cycle arrest. The accumulation of senescent cells creates a pro-inflammatory environment that can negatively affect tissue functions and may promote the development of aging-related diseases. Typical biomarkers related to senescence include senescence-associated β-galactosidase activity, histone H2A.X phosphorylation at serine139 (γH2A.X), and senescence-associated heterochromatin foci (SAHF) with heterochromatin protein 1γ (HP-1γ protein) Moreover, immune cells undergoing senescence, which is known as immunosenescence, can affect innate and adaptative immune functions and may elicit detrimental effects over the host’s susceptibility to infectious diseases. Although associations between senescence and pathogens have been reported, clear links between both, and the related molecular mechanisms involved remain to be determined. Furthermore, it remains to be determined whether infections effectively induce senescence, the impact of senescence and immunosenescence over infections, or if both events coincidently share common molecular markers, such as γH2A.X and p53. Here, we review and discuss the most recent reports that describe cellular hallmarks and biomarkers related to senescence in immune and non-immune cells in the context of infections, seeking to better understand their relationships. Related literature was searched in Pubmed and Google Scholar databases with search terms related to the sections and subsections of this review. Copyright © 2023 Reyes, Ortiz, Duarte, Fernández, Hernández-Armengol, Palacios, Prado, Andrade, Rodriguez-Guilarte, Kalergis, Simon, Carreño, Riedel, Cáceres and González.Ítem Differences in the immune response elicited by two immunization schedules with an inactivated SARS-CoV-2 vaccine in a randomized phase 3 clinical trial(eLife Sciences Publications Ltd, 2022) Gálvez, Nicolás M. S.; Pacheco, Gaspar A.; Schultz, Bárbara M.; Melo-González, Felipe; Soto, Jorge A.; Duarte, Luisa F.; González, Liliana A.; Rivera-Pérez, Daniela; Ríos, Mariana; Berrios, Roslye V.; Vázquez, Yaneisi; Moreno-Tapia, Daniela; Vallejos, Omar P.; Andrade, Catalina A.; Hoppe-Elsholz, Guillermo; Iturriaga, Carolina; Urzua, Marcela; Navarrete, María S.; Rojas, Álvaro; Fasce, Rodrigo; Fernández, Jorge; Mora, Judith; Ramírez, Eugenio; Gaete-Argel, Aracelly; Acevedo, Mónica L.; Valiente-Echeverría, Fernando; Soto-Rifo, Ricardo; Weiskopf, Daniela; Grifoni, Alba; Sette, Alessandro; Zeng, Gang; Meng, Weining; González-Aramundiz, José V.; Johnson, Marina; Goldblatt, David; González, Pablo A.; Abarca, Katia; Bueno, Susan M.; Kalergis, Alexis M.Background: The development of vaccines to control the coronavirus disease 2019 (COVID-19) pandemic progression is a worldwide priority. CoronaVac is an inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine approved for emergency use with robust efficacy and immunogenicity data reported in trials in China, Brazil, Indonesia, Turkey, and Chile. Methods: This study is a randomized, multicenter, and controlled phase 3 trial in healthy Chilean adults aged ≥18 years. Volunteers received two doses of CoronaVac separated by 2 (0–14 schedule) or 4 weeks (0–28 schedule); 2302 volunteers were enrolled, 440 were part of the immunogenicity arm, and blood samples were obtained at different times. Samples from a single center are reported. Humoral immune responses were evaluated by measuring the neutralizing capacities of circulating antibodies. Cellular immune responses were assessed by ELISPOT and flow cytometry. Correlation matrixes were performed to evaluate correlations in the data measured. Results: Both schedules exhibited robust neutralizing capacities with the response induced by the 0–28 schedule being better. No differences were found in the concentration of antibodies against the virus and different variants of concern (VOCs) between schedules. Stimulation of peripheral blood mononuclear cells (PBMCs) with Mega pools of Peptides (MPs) induced the secretion of interferon (IFN)-γ and the expression of activation induced markers in CD4+ T cells for both schedules. Correlation matrixes showed strong correlations between neutralizing antibodies and IFN-γ secretion. Conclusions: Immunization with CoronaVac in Chilean adults promotes robust cellular and humoral immune responses. The 0–28 schedule induced a stronger humoral immune response than the 0–14 schedule. © Gálvez, Pacheco, Schultz et al.Ítem Inactivated Vaccine-Induced SARS-CoV-2 Variant-Specific Immunity in Children(American Society for Microbiology, 2022-12) Soto, Jorge A.; Melo González, Felipe; Gutierrez Vera, Cristián; Schultz, Bárbara M.; Berríos Rojas, Roslye V.; Rivera Pérez, Daniela; Piña Iturbe, Alejandro; Hoppe Elsholz, Guillermo; Duarte, Luisa F.; Vázquez, Yaneisi; Moreno Tapia, Daniela; Ríos, Mariana; Palacios, Pablo A.; Garcia Betancourt, Richard; Santibañez, Álvaro; Pacheco, Gaspar A.; Mendez, Constanza; Andrade, Catalina A.; Silva, Pedro H.; Diethelm Varela, Benjamín; Astudillo, Patricio; Calvo, Mario; Cárdenas, Antonio; González, Marcela; Goldsack, Macarena; Gutiérrez, Valentina; Potin, Marcela; Schilling, Andrea; Tapia, Lorena I.; Twele, Loreto; Villena, Rodolfo; Grifoni, Albar; Sette, Alessandro; Weiskopf, Daniela; Fasce, Rodrigo A.; Fernández, Jorge; Mora, Judith; Ramírez, Eugenio; Gaete Argel, Aracelly; Acevedo, Mónica L.; Valiente Echeverría, Fernando; Soto Rifo, Ricardo; Retamal Díaz, Angello; Muñoz Jofré, Nathalia; Meng, Xing; Xin, Qianqian; Alarcón Bustamante, Eduardo; González Aramundiz, José V.; Le Corre, Nicole; Álvarez Figueroa, María Javiera; González, Pablo A.; Abarca, Katia; Perret, Cecilia; Carreño, Leandro J.; Bueno, Susan M.; Kalergis, Alexis M.Multiple vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been evaluated in clinical trials. However, trials addressing the immune response in the pediatric population are scarce. The inactivated vaccine CoronaVac has been shown to be safe and immunogenic in a phase 1/2 clinical trial in a pediatric cohort in China. Here, we report interim safety and immunogenicity results of a phase 3 clinical trial for CoronaVac in healthy children and adolescents in Chile. Participants 3 to 17 years old received two doses of CoronaVac in a 4-week interval until 31 December 2021. Local and systemic adverse reactions were registered for volunteers who received one or two doses of CoronaVac. Whole-blood samples were collected from a subgroup of 148 participants for humoral and cellular immunity analyses. The main adverse reaction reported after the first and second doses was pain at the injection site. Four weeks after the second dose, an increase in neutralizing antibody titer was observed in subjects relative to their baseline visit. Similar results were found for activation of specific CD41 T cells. Neutralizing antibodies were identified against the Delta and Omicron variants. However, these titers were lower than those for the D614G strain. Importantly, comparable CD41 T cell responses were detected against these variants of concern. Therefore, CoronaVac is safe and immunogenic in subjects 3 to 17 years old, inducing neutralizing antibody secretion and activating CD41 T cells against SARS-CoV-2 and its variants. (This study has been registered at ClinicalTrials .gov under no. NCT04992260.) IMPORTANCE This work evaluated the immune response induced by two doses of CoronaVac separated by 4 weeks in healthy children and adolescents in Chile. To date, few studies have described the effects of CoronaVac in the pediatric population. Therefore, it is essential to generate knowledge regarding the protection of vaccines in this population. Along these lines, we reported the anti-S humoral response and cellular immune response to several SARS-CoV-2 proteins that have been published and recently studied. Here, we show that a vaccination schedule consisting of two doses separated by 4 weeks induces the secretion of neutralizing antibodies against SARS-CoV-2. Furthermore, CoronaVac induces the activation of CD41 T cells upon stimulation with peptides from the proteome of SARS-CoV-2. These results indicate that, even though the neutralizing antibody response induced by vaccination decreases against the Delta and Omicron variants, the cellular response against these variants is comparable to the response against the ancestral strain D614G, even being significantly higher against Omicron. Copyright © 2022 Soto et al.Ítem Increased Heme Oxygenase 1 Expression upon a Primary Exposure to the Respiratory Syncytial Virus and a Secondary Mycobacterium bovis Infection(MDPI, 2022-07) Canedo-Marroquín, Gisela; Soto, Jorge A.; Andrade, Catalina A.; Bueno, Susan M.; Kalergis, Alexis M.The human respiratory syncytial virus (hRSV) is the leading cause of severe lower respiratory tract infections in infants. Because recurrent epidemics based on reinfection occur in children and adults, hRSV has gained interest as a potential primary pathogen favoring secondary opportunistic infections. Several infection models have shown different mechanisms by which hRSV promotes immunopathology to prevent the development of adaptive protective immunity. However, little is known about the long-lasting effects of viral infection on pulmonary immune surveillance mechanisms. As a first approach, here we evaluated whether a primary infection by hRSV, once resolved, dampens the host immune response to a secondary infection with an attenuated strain of Mycobacterium bovis (M. Bovis) strain referred as to Bacillus Calmette-Guerin (BCG). We analyzed leukocyte dynamics and immunomodulatory molecules in the lungs after eleven- and twenty-one-days post-infection with Mycobacterium, using previous hRSV infected mice, by flow cytometry and the expression of critical genes involved in the immune response by real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR). Among the latter, we analyzed the expression of Heme Oxygenase (HO)-1 in an immunization scheme in mice. Our data suggest that a pre-infection with hRSV has a conditioning effect promoting lung pathology during a subsequent mycobacterial challenge, characterized by increased infiltration of innate immune cells, including interstitial and alveolar macrophages. Our data also suggest that hRSV impairs pulmonary immune responses, promoting secondary mycobacterial colonization and lung survival, which could be associated with an increase in the expression of HO-1. Additionally, BCG is a commonly used vaccine that can be used as a platform for the generation of new recombinant vaccines, such as a recombinant BCG strain expressing the nucleoprotein of hRSV (rBCG-N-hRSV). Therefore, we evaluated if the immunization with rBCG-N-hRSV could modulate the expression of HO-1. We found a differential expression pattern for HO-1, where a higher induction of HO-1 was detected on epithelial cells compared to dendritic cells during late infection times. This is the first study to demonstrate that infection with hRSV produces damage in the lung epithelium, promoting subsequent mycobacterial colonization, characterized by an increase in the neutrophils and alveolar macrophages recruitment. Moreover, we determined that immunization with rBCG-N-hRSV modulates differentially the expression of HO-1 on immune and epithelial cells, which could be involved in the repair of pulmonary tissue. © 2022 by the authors.