Examinando por Autor "Araya, David"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Efficient estimation of time-dependent brain functional connectivity using anatomical connectivity constraints(Institute of Electrical and Electronics Engineers Inc., 2023) Hernandez Larzabal, Hernan; Araya, David; Gonzalez Rodriguez, Lazara Liset; Roman, Claudio; Trujillo-Barreto, Nelson; Guevara, Pamela; El-Deredy, WaelThere is ongoing interest in the dynamics of resting state brain networks (RSNs) as potential predictors of cognitive and behavioural states. Multivariate Autoregressors (MAR) are used to model regional brain activity as a linear combination of past activity in other regions. The coefficients of the MAR are taken as estimates of effective brain connectivity. However, assumption of stationarity, and the large number of coefficients renders the MAR impractical for estimating brain networks from standard neuroimaging time-series of limited durations. We propose HsMM-MAR-AC, a novel sparse hybrid discrete-continuous model for the efficient estimation of time-dependent effective brain networks from non-stationary brain activity time-series. Discrete quasi-stationary Brain States, and the fast switching between them, are modelled by a Hidden semi-Markov Model whose continuous emissions are drawn from a sparse MAR. The coefficients of the MAR are restricted by Anatomical Brain Connectivity information in two ways: 1) Effective direct connectivity between two brain regions is only considered if the corresponding anatomical connection exists; and 2) the autoregressors lag associated with each connection is based on the fiber length between the two regions, such that only one lag per connection is estimated. We test the accuracy of HsMM-MAR-AC in recovering simulated resting state networks of various durations, and at different thresholds of anatomical restrictions. We demonstrate that HsMM-MAR-AC recovers the RSNs more accurately than the benchmark method of the sliding window, with as little as 4 minutes of data. We also show that when the anatomical restrictions are relaxed, longer time-series are needed to estimate the networks, and became computationally unfeasible without anatomical restrictions. HsMM-MAR-AC offers an efficient model for estimating time-dependent Effective Connectivity from neuroimaging data that exploits the advantages of Hidden Markov and MAR models without identifiability problems, excessive demand on data collection, or unnecessary computational effort. © 2013 IEEE.Ítem Self-regulation learning as active inference: dynamic causal modeling of an fMRI neurofeedback task(Frontiers Media SA, 2024) Vargas, Gabriela; Araya, David; Sepulveda, Pradyumna; Rodriguez-Fernandez, Maria; Friston, Karl J.; Sitaram, Ranganatha; El-Deredy, WaelIntroduction: Learning to self-regulate brain activity by neurofeedback has been shown to lead to changes in the brain and behavior, with beneficial clinical and non-clinical outcomes. Neurofeedback uses a brain-computer interface to guide participants to change some feature of their brain activity. However, the neural mechanism of self-regulation learning remains unclear, with only 50% of the participants succeeding in achieving it. To bridge this knowledge gap, our study delves into the neural mechanisms of self-regulation learning via neurofeedback and investigates the brain processes associated with successful brain self-regulation. Methods: We study the neural underpinnings of self-regulation learning by employing dynamical causal modeling (DCM) in conjunction with real-time functional MRI data. The study involved a cohort of 18 participants undergoing neurofeedback training targeting the supplementary motor area. A critical focus was the comparison between top-down hierarchical connectivity models proposed by Active Inference and alternative bottom-up connectivity models like reinforcement learning. Results: Our analysis revealed a crucial distinction in brain connectivity patterns between successful and non-successful learners. Particularly, successful learners evinced a significantly stronger top-down effective connectivity towards the target area implicated in self-regulation. This heightened top-down network engagement closely resembles the patterns observed in goal-oriented and cognitive control studies, shedding light on the intricate cognitive processes intertwined with self-regulation learning. Discussion: The findings from our investigation underscore the significance of cognitive mechanisms in the process of self-regulation learning through neurofeedback. The observed stronger top-down effective connectivity in successful learners indicates the involvement of hierarchical cognitive control, which aligns with the tenets of Active Inference. This study contributes to a deeper understanding of the neural dynamics behind successful self-regulation learning and provides insights into the potential cognitive architecture underpinning this process.