Examinando por Autor "Ardiles, A."
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Gastroprotective activity of Parastrephia quadrangularis (Meyen), cabrera from the atacama desert(MDPI AG, 2018-09) Ardiles, A.; Barrientos, R.; Simirgiotis, M.J.; Bórquez, J.; Sepúlveda, B.; Areche, C.Forty-three metabolites including several methoxylated flavonoids, tremetones, and ent-clerodane diterpenes were accurately identified for the first time in the ethanolic extract of P. quadrangularis by means of hyphenated UHPLC-quadrupole Orbitrap mass spectrometry, and seven isolated compounds were tested regarding gastroprotective activity using the HCl/EtOH-induced lesion model in mice. A new tremetone (compound 6) is reported based on spectroscopic evidence. The isolated clerodanes and tremetones showed gastroprotective activity in a mouse model, evidenced by compound 7 (p-coumaroyloxytremetone), which showed the highest gastroprotective activity (76%), which was higher than the control drug lansoprazole (72%). Our findings revealed that several constituents of this plant have gastroprotective activity, and particularly, p-coumaroyloxytremetone could be considered as a lead molecule to explore new gastroprotective agents. This plant is a rich source of biologically active tremetones and terpenoids which can support the ethnobotanical use of the plant. © 2018 MDPI AG. All rights reserved.Ítem Secondary metabolite profiling of species of the genus usnea by UHPLC-ESI-OT-MS-MS(MDPI AG, 2018) Salgado, F.; Albornoz, L.; Cortéz, C.; Stashenko, E.; Urrea-Vallejo, K.; Nagles, E.; Galicia-Virviescas, C.; Cornejo, A.; Ardiles, A.; Simirgiotis, M.; García-Beltrán, O.; Areche, C.Lichens are symbiotic associations of fungi with microalgae and/or cyanobacteria, which are considered among the slowest growing organisms, with strong tolerance to adverse environmental conditions. There are about 400 genera and 1600 species of lichens and those belonging to the Usnea genus comprise about 360 of these species. Usnea lichens have been used since ancient times as dyes, cosmetics, preservatives, deodorants and folk medicines. The phytochemistry of the Usnea genus includes more than 60 compounds which belong to the following classes: depsides, depsidones, depsones, lactones, quinones, phenolics, polysaccharides, fatty acids and dibenzofurans. Due to scarce knowledge of metabolomic profiles of Usnea species (U. barbata, U. antarctica, U. rubicunda and U. subfloridana), a study based on UHPLC-ESI-OT-MS-MS was performed for a comprehensive characterization of their secondary metabolites. From the methanolic extracts of these species a total of 73 metabolites were identified for the first time using this hyphenated technique, including 34 compounds in U. barbata, 21 in U. antarctica, 38 in U. rubicunda and 37 in U. subfloridana. Besides, a total of 13 metabolites were not identified and reported so far, and could be new according to our data analysis. This study showed that this hyphenated technique is rapid, effective and accurate for phytochemical identification of lichen metabolites and the data collected could be useful for chemotaxonomic studies.