Examinando por Autor "Arias, C."
Mostrando 1 - 4 de 4
Resultados por página
Opciones de ordenación
Ítem 2D sigma models and differential Poisson algebras(Springer, 2015-08) Arias, C.; Boulanger, N.; Sundell, P.; Torres-Gomez, A.We construct a two-dimensional topological sigma model whose target space is endowed with a Poisson algebra for differential forms. The model consists of an equal number of bosonic and fermionic fields of worldsheet form degrees zero and one. The action is built using exterior products and derivatives, without any reference to a worldsheet metric, and is of the covariant Hamiltonian form. The equations of motion define a universally Cartan integrable system. In addition to gauge symmetries, the model has one rigid nilpotent supersymmetry corresponding to the target space de Rham operator. The rigid and local symmetries of the action, respectively, are equivalent to the Poisson bracket being compatible with the de Rham operator and obeying graded Jacobi identities. We propose that perturbative quantization of the model yields a covariantized differential star product algebra of Kontsevich type. We comment on the resemblance to the topological A model.Ítem Conformal geometry of embedded manifolds with boundary from universal holographic formulæ(Academic Press Inc., 2021-06) Arias, C.; Gover, A.R.; Waldron, A.For an embedded conformal hypersurface with boundary, we construct critical order local invariants and their canonically associated differential operators. These are obtained holographically in a construction that uses a singular Yamabe problem and a corresponding minimal hypersurface with boundary. They include an extrinsic Q-curvature for the boundary of the embedded conformal manifold and, for its interior, the Q-curvature and accompanying boundary transgression curvatures. This gives universal formulæ for extrinsic analogs of Branson Q-curvatures that simultaneously generalize the Willmore energy density, including the boundary transgression terms required for conformal invariance. It also gives extrinsic conformal Laplacian power type operators associated with all these curvatures. The construction also gives formulæ for the divergent terms and anomalies in the volume and hyper-area asymptotics determined by minimal hypersurfaces having boundary at the conformal infinity. A main feature is the development of a universal, distribution-based, boundary calculus for the treatment of these and related problems. © 2021Ítem Einstein-AdS action, renormalized volume/area and holographic Rényi entropies(Springer Verlag, 2018-08) Anastasiou, G.; Araya, I.J.; Arias, C.; Olea, R.We exhibit the equivalence between the renormalized volume of asymptotically anti-de Sitter (AAdS) Einstein manifolds in four and six dimensions, and their renormalized Euclidean bulk gravity actions. The action is that of Einstein gravity, where the renormalization is achieved through the addition of a single topological term. We generalize this equivalence, proposing an explicit form for the renormalized volume of higher even-dimensional AAdS Einstein manifolds. We also show that evaluating the renormalized bulk gravity action on the conically singular manifold of the replica trick results in an action principle that corresponds to the renormalized volume of the regular part of the bulk, plus the renormalized area of a codimension-2 cosmic brane whose tension is related to the replica index. Renormalized Rényi entropy of odd-dimensional holographic CFTs can thus be obtained from the renormalized area of the brane with finite tension, including the effects of its backreaction on the bulk geometry. The area computation corresponds to an extremization problem for an enclosing surface that extends to the AdS boundary, where the newly defined renormalized volume is considered. © 2018, The Author(s).Ítem Superforms in six-dimensional superspace(Springer, 2016) Arias, C.; Linch, WD; Ridgway, AKWe investigate the complex of differential forms in curved, six-dimensional, N = (1, 0) superspace. The superconformal group acts on this complex by super-Weyl transformations. An ambi-twistor-like representation of a second conformal group arises on a pure spinor subspace of the cotangent space. The p-forms are defined by super-Weylcovariant tensor fields on this pure spinor subspace. The on-shell dynamics of such fields is superconformal. We construct the superspace de Rham complex by successively obstructing the closure of forms. We then extend the analysis to composite forms obtained by wedging together forms of lower degree. Finally, we comment on applications to integration in curved superspace and propose a superspace formulation of the abelian limit of the non-abelian tensor hierarchy of N = (1, 0) superconformal models.