Logotipo del repositorio
  • Español
  • English
  • Iniciar sesión
    Ayuda

    Instrucciones:

    El Repositorio Institucional Académico (RIA) de la Universidad Andrés Bello, es un recurso de acceso abierto. No obstante, y de acuerdo con la ley chilena vigente sobre propiedad intelectual, mantiene en acceso restringido diversos documentos, los cuales sólo pueden ser consultados por la comunidad universitaria registrada. Para poder acceder a éstos, verificar el tipo de usuario y método de acceso, siguiendo las instrucciones que se detallan a continuación:

    • Si eres investigador, docente o funcionario con correo @unab.cl, ingresa utilizando tu usuario de computador o intranet (nombre de usuario sin incluir @unab.cl) y clave.
    • Si eres alumno, profesor adjunto o exalumno con correo @uandresbello.edu, debes registrarte primero, pinchando donde dice Nuevo usuario. Una vez registrado y obtenida el alta, ingresa con el correo electrónico institucional y la clave elegida. El registro se debe realizar utilizando la cuenta de correo institucional, no serán válidas cuentas gmail, hotmail o cualquier otro proveedor.
    • Si eres usuario externo, contactar directamente a repositorio@unab.cl
    o
    ¿Nuevo Usuario? Pulse aquí para registrarse¿Has olvidado tu contraseña?
  • Comunidades
  • Todo RIA
  • Contacto
  • Procedimientos de publicaciónDerecho de autorPolíticas del Repositorio
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Arredondo, Sebastián B."

Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    Ítem
    Fructose consumption reduces hippocampal synaptic plasticity underlying cognitive performance
    (Elsevier, 2015-11) Cisternas, Pedro; Salazar, Paulina; Serrano, Felipe G.; Montecinos-Oliva, Carla; Arredondo, Sebastián B.; Varela-Nallar, Lorena; Barja, Salesa; Vio, Carlos P.; Gomez-Pinilla, Fernando; Inestrosa, Nibaldo C.
    Metabolic syndrome (MetS) is a global epidemic, which involves a spectrum of metabolic disorders comprising diabetes and obesity. The impact of MetS on the brain is becoming to be a concern, however, the poor understanding of mechanisms involved has limited the development of therapeutic strategies. We induced a MetS-like condition by exposing mice to fructose feeding for 7. weeks. There was a dramatic deterioration in the capacity of the hippocampus to sustain synaptic plasticity in the forms of long-term potentiation (LTP) and long-term depression (LTD). Mice exposed to fructose showed a reduction in the number of contact zones and the size of postsynaptic densities (PSDs) in the hippocampus, as well as a decrease in hippocampal neurogenesis. There was an increase in lipid peroxidation likely associated with a deficiency in plasma membrane excitability. Consistent with an overall hippocampal dysfunction, there was a subsequent decrease in hippocampal dependent learning and memory performance, i.e., spatial learning and episodic memory. Most of the pathological sequel of MetS in the brain was reversed three month after discontinue fructose feeding. These results are novel to show that MetS triggers a cascade of molecular events, which disrupt hippocampal functional plasticity, and specific aspects of learning and memory function. The overall information raises concerns about the risk imposed by excessive fructose consumption on the pathology of neurological disorders. © 2015.
  • No hay miniatura disponible
    Ítem
    Neuronal surface P antigen (NSPA) modulates postsynaptic NMDAR stability through ubiquitination of tyrosine phosphatase PTPMEG
    (BioMed Central Ltd, 2020-12-01) Espinoza, Sofía; Arredondo, Sebastián B.; Barake, Francisca; Carvajal, Francisco; Guerrero, Fernanda G.; Segovia-Miranda, Fabian; Valenzuela, David M.; Wyneken, Ursula; Rojas-Fernández, Alejandro; Cerpa, Waldo; Massardo, Loreto; Varela-Nallar, Lorena; González, Alfonso
    Background: Cognitive dysfunction (CD) is common among patients with the autoimmune disease systemic lupus erythematosus (SLE). Anti-ribosomal P autoantibodies associate with this dysfunction and have neuropathogenic effects that are mediated by cross-reacting with neuronal surface P antigen (NSPA) protein. Elucidating the function of NSPA can then reveal CD pathogenic mechanisms and treatment opportunities. In the brain, NSPA somehow contributes to glutamatergic NMDA receptor (NMDAR) activity in synaptic plasticity and memory. Here we analyze the consequences of NSPA absence in KO mice considering its structural features shared with E3 ubiquitin ligases and the crucial role of ubiquitination in synaptic plasticity. Results: Electrophysiological studies revealed a decreased long-term potentiation in CA3-CA1 and medial perforant pathway-dentate gyrus (MPP-DG) hippocampal circuits, reflecting glutamatergic synaptic plasticity impairment in NSPA-KO mice. The hippocampal dentate gyrus of these mice showed a lower number of Arc-positive cells indicative of decreased synaptic activity and also showed proliferation defects of neural progenitors underlying less adult neurogenesis. All this translates into poor spatial and recognition memory when NSPA is absent. A cell-based assay demonstrated ubiquitination of NSPA as a property of RBR-type E3 ligases, while biochemical analysis of synaptic regions disclosed the tyrosine phosphatase PTPMEG as a potential substrate. Mice lacking NSPA have increased levels of PTPMEG due to its reduced ubiquitination and proteasomal degradation, which correlated with lower levels of GluN2A and GluN2B NMDAR subunits only at postsynaptic densities (PSDs), indicating selective trafficking of these proteins out of PSDs. As both GluN2A and GluN2B interact with PTPMEG, tyrosine (Tyr) dephosphorylation likely drives their endocytic removal from the PSD. Actually, immunoblot analysis showed reduced phosphorylation of the GluN2B endocytic signal Tyr1472 in NSPA-KO mice. Conclusions: NSPA contributes to hippocampal plasticity and memory processes ensuring appropriate levels of adult neurogenesis and PSD-located NMDAR. PTPMEG qualifies as NSPA ubiquitination substrate that regulates Tyr phosphorylation-dependent NMDAR stability at PSDs. The NSPA/PTPMEG pathway emerges as a new regulator of glutamatergic transmission and plasticity and may provide mechanistic clues and therapeutic opportunities for anti-P-mediated pathogenicity in SLE, a still unmet need. © 2020, The Author(s).
  • No hay miniatura disponible
    Ítem
    Transcriptional activation of genes associated with the matrisome is a common feature of senescent endothelial cells
    (Springer Science and Business Media B.V, 2025-04) González, Ignacia; Arredondo, Sebastián B.; Maldonado-Agurto, Rodrigo
    Cellular senescence is a stable cell cycle arrest that occurs in response to various stress stimuli and affects multiple cell types, including endothelial cells (ECs). Senescent cells accumulate with age, and their removal has been linked to reduced age-related diseases. However, some senescent cells are important for tissue homeostasis. Therefore, understanding the diversity of senescent cells in a cell-type-specific manner and their underlying molecular mechanisms is essential. Senescence impairs key ECs functions which are necessary for vascular homeostasis, leading to endothelial dysfunction and age-related vascular diseases. In order to gain insights into these mechanisms, we analyzed publicly available RNA-seq datasets to identify gene expression changes in senescent ECs induced by doxorubicin, irradiation, and replication exhaustion. While only a few genes were consistently differentially expressed across all conditions, some gene ontologies (GO) were shared. Among these, our analysis focused on validating the expression of genes associated with the matrisome, which includes genes encoding for extracellular matrix (ECM) structural components and ECM-associated proteins, in a doxorubicin-induced senescence model. Our results show that the matrisome transcriptome undergoes significant remodeling in senescent endothelial cells, regardless of the specific inducers of senescence, highlighting the importance of understanding how ECM alterations affect senescence