Logotipo del repositorio
  • Español
  • English
  • Iniciar sesión
    Ayuda

    Instrucciones:

    El Repositorio Institucional Académico (RIA) de la Universidad Andrés Bello, es un recurso de acceso abierto. No obstante, y de acuerdo con la ley chilena vigente sobre propiedad intelectual, mantiene en acceso restringido diversos documentos, los cuales sólo pueden ser consultados por la comunidad universitaria registrada. Para poder acceder a éstos, verificar el tipo de usuario y método de acceso, siguiendo las instrucciones que se detallan a continuación:

    • Si eres investigador, docente o funcionario con correo @unab.cl, ingresa utilizando tu usuario de computador o intranet (nombre de usuario sin incluir @unab.cl) y clave.
    • Si eres alumno, profesor adjunto o exalumno con correo @uandresbello.edu, debes registrarte primero, pinchando donde dice Nuevo usuario. Una vez registrado y obtenida el alta, ingresa con el correo electrónico institucional y la clave elegida. El registro se debe realizar utilizando la cuenta de correo institucional, no serán válidas cuentas gmail, hotmail o cualquier otro proveedor.
    • Si eres usuario externo, contactar directamente a repositorio@unab.cl
    o
    ¿Nuevo Usuario? Pulse aquí para registrarse¿Has olvidado tu contraseña?
  • Comunidades
  • Todo RIA
  • Contacto
  • Procedimientos de publicaciónDerecho de autorPolíticas del Repositorio
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Beers, T.C."

Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    Ítem
    Disentangling the Galactic Halo with APOGEE. I. Chemical and Kinematical Investigation of Distinct Metal-poor Populations
    (Institute of Physics Publishing, 2018) Hayes, C.R.; Majewski, S.R.; Shetrone, M.; Fernández-Alvar, E.; Prieto, C.A.; Schuster, W.J.; Carigi, L.; Cunha, K.; Smith, V.V.; Sobeck, J.; Almeida, A.; Beers, T.C.; Carrera, R.; Fernández-Trincado, J.G.; García-Hernández, D.A.; Geisler, D.; Lane, R.R.; Lucatello, S.; Matthews, A.M.; Minniti, D.; Nitschelm, C.; Tang, B.; Tissera, P.B.; Zamora, O.
    We find two chemically distinct populations separated relatively cleanly in the [Fe/H]-[Mg/Fe] plane, but also distinguished in other chemical planes, among metal-poor stars (primarily with metallicities [Fe H] < -0.9) observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) and analyzed for Data Release 13 (DR13) of the Sloan Digital Sky Survey. These two stellar populations show the most significant differences in their [X/Fe] ratios for the α-elements, C+N, Al, and Ni. In addition to these populations having differing chemistry, the low metallicity high-Mg population (which we denote "the HMg population") exhibits a significant net Galactic rotation, whereas the low-Mg population (or "the LMg population") has halo-like kinematics with little to no net rotation. Based on its properties, the origin of the LMg population is likely an accreted population of stars. The HMg population shows chemistry (and to an extent kinematics) similar to the thick disk, and is likely associated with in situ formation. The distinction between the LMg and HMg populations mimics the differences between the populations of low- and high-α halo stars found in previous studies, suggesting that these are samples of the same two populations.
  • Cargando...
    Miniatura
    Ítem
    Disentangling the Galactic Halo with APOGEE. II. Chemical and Star Formation Histories for the Two Distinct Populations
    (Institute of Physics Publishing, 2018) Fernández-Alvar, E.; Carigi, L.; Schuster, W.J.; Hayes, C.R.; Ávila-Vergara, N.; Majewski, S.R.; Allende Prieto, C.; Beers, T.C.; Sánchez, S.F.; Zamora, O.; García-Hernández, D.A.; Tang, B.; Fernández-Trincado, J.G.; Tissera, P.; Geisler, D.; Villanova, S.
    The formation processes that led to the current Galactic stellar halo are still under debate. Previous studies have provided evidence for different stellar populations in terms of elemental abundances and kinematics, pointing to different chemical and star formation histories (SFHs). In the present work, we explore, over a broader range in metallicity (-2.2 < [Fe H] < +0.5), the two stellar populations detected in the first paper of this series from metal-poor stars in DR13 of the Apache Point Observatory Galactic Evolution Experiment (APOGEE). We aim to infer signatures of the initial mass function (IMF) and the SFH from the two α-to-iron versus iron abundance chemical trends for the most APOGEE-reliable α-elements (O, Mg, Si, and Ca). Using simple chemical-evolution models, we infer the upper mass limit (M up) for the IMF and the star formation rate, and its duration for each population. Compared with the low-α population, we obtain a more intense and longer-lived SFH, and a top-heavier IMF for the high-α population.
  • Cargando...
    Miniatura
    Ítem
    The central spheroids of Milky Way mass-sized galaxies
    (Oxford University Press, 2018-01) Tissera, P.B.; Machado, R.E.G.; Carollo, D.; Minniti, D.; Beers, T.C.; Zoccali, M.; Meza, A.
    We study the properties of the central spheroids located within 10 kpc of the centre of mass of MilkyWay mass-sized galaxies simulated in a cosmological context. The simulated central regions are dominated by stars older than 10 Gyr, mostly formed in situ, with a contribution of ~30 per cent from accreted stars. These stars formed in well-defined starbursts, although accreted stars exhibit sharper and earlier ones. The fraction of accreted stars increases with galactocentric distance, so that at a radius of~8-10 kpc, a fraction of~40 per cent, on average, is detected. Accreted stars are slightly younger, lower metallicity, and more α-enhanced than in situ stars. A significant fraction of old stars in the central regions come from a few (2-3) massive satellites (~1010M⊙). The bulge components receive larger contributions of accreted stars formed in dwarfs smaller than ~109.5M⊙. The difference between the distributions of ages and metallicities of old stars is thus linked to the accretion histories - those central regions with a larger fraction of accreted stars are those with contributions from more massive satellites. The kinematical properties of in situ and accreted stars are consistent with the latter being supported by their velocity dispersions, while the former exhibit clear signatures of rotational support. Our simulations demonstrate a range of characteristics, with some systems exhibiting a co-existing bar and spheroid in their central regions, resembling in some respect the central region of the Milky Way. © 2016 The Authors.