Examinando por Autor "Bento, Joaquim P."
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Ítem Gas Hydrate Estimate in an Area of Deformation and High Heat Flow at the Chile Triple Junction(MDPI AG, 2019-01-01) Villar-Muñoz, Lucía; Vargas-Cordero, Iván; Bento, Joaquim P.; Tinivella, Umberta; Fernandoy, Francisco; Giustiniani, Michela; Behrmann, Jan H.; Calderón-Díaz, SergioLarge amounts of gas hydrate are present in marine sediments offshore Taitao Peninsula, near the Chile Triple Junction. Here, marine sediments on the forearc contain carbon that is converted to methane in a regime of very high heat flow and intense rock deformation above the downgoing oceanic spreading ridge separating the Nazca and Antarctic plates. This regime enables vigorous fluid migration. Here, we present an analysis of the spatial distribution, concentration, estimate of gas-phases (gas hydrate and free gas) and geothermal gradients in the accretionary prism, and forearc sediments offshore Taitao (45.5◦–47◦ S). Velocity analysis of Seismic Profile RC2901-751 indicates gas hydrate concentration values <10% of the total rock volume and extremely high geothermal gradients (<190◦C·km−1). Gas hydrates are located in shallow sediments (90–280 m below the seafloor). The large amount of hydrate and free gas estimated (7.21 × 1011 m3 and 4.1 × 1010 m3; respectively), the high seismicity, the mechanically unstable nature of the sediments, and the anomalous conditions of the geothermal gradient set the stage for potentially massive releases of methane to the ocean, mainly through hydrate dissociation and/or migration directly to the seabed through faults. We conclude that the Chile Triple Junction is an important methane seepage area and should be the focus of novel geological, oceanographic, and ecological research.Ítem High gas hydrate and free gas concentrations: An explanation for seeps offshore south mocha island(MDPI AG, 2018-11) Vargas-Cordero, Iván; Villar-Muñoz, Lucía; Bento, Joaquim P.; Tinivella, UmbertaRecent studies have reported cold seeps offshore of Mocha Island. Gas hydrate occurrences along the Chilean margin could explain seeps presence. Gas-phase (gas hydrate and free gas) and geothermal gradients were estimated analysing two seismic sections. Close to Mocha Island (up to 20 km) were detected high (up to 1900 m/s) and low (1260 m/s) velocities associated with high gas hydrate (up to 20% of total volume) and free gas (up to 1.1% of total volume) concentrations, respectively. A variable and high geothermal gradient (65-110 °C/km) was obtained. These results are related to high supply of deep fluids canalised by faults and fractures. Faraway from Mocha Island (>60 km), free gas concentrations decrease to 0.3% of total volume and low geothermal gradient (from 35 to 60 °C/km) are associated with low fluids supply. Finally, we propose gas hydrate dissociation processes as the main supply source for seeps in the vicinity of Mocha Island. These processes can be caused by: (a) active faults and seismic activity; and (b) warm fluid expulsion from deeper zones altering hydrate stability conditions. In both cases, gas hydrate dissociation could generate slope instability and landslides, as occurred in the past in this region and reported in the literature. © 2018 by the authors. Licensee MDPI, Basel, Switzerland.Ítem High gas hydrate and free gas concentrations: An explanation for seeps offshore south mocha island(MDPI AG, 2018-11) Vargas-Cordero, Iván; Tinivella, Umberta; Villar-Muñoz, Lucía; Bento, Joaquim P.Recent studies have reported cold seeps offshore of Mocha Island. Gas hydrate occurrences along the Chilean margin could explain seeps presence. Gas-phase (gas hydrate and free gas) and geothermal gradients were estimated analysing two seismic sections. Close to Mocha Island (up to 20 km) were detected high (up to 1900 m/s) and low (1260 m/s) velocities associated with high gas hydrate (up to 20% of total volume) and free gas (up to 1.1% of total volume) concentrations, respectively. A variable and high geothermal gradient (65-110 °C/km) was obtained. These results are related to high supply of deep fluids canalised by faults and fractures. Faraway from Mocha Island (>60 km), free gas concentrations decrease to 0.3% of total volume and low geothermal gradient (from 35 to 60 °C/km) are associated with low fluids supply. Finally, we propose gas hydrate dissociation processes as the main supply source for seeps in the vicinity of Mocha Island. These processes can be caused by: (a) active faults and seismic activity; and (b) warm fluid expulsion from deeper zones altering hydrate stability conditions. In both cases, gas hydrate dissociation could generate slope instability and landslides, as occurred in the past in this region and reported in the literature. © 2018 by the authors. Licensee MDPI, Basel, Switzerland.