Examinando por Autor "Bergemann M."
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Ítem Atomic data for the Gaia-ESO Survey(EDP Sciences, 2021-01-01) Heiter U.; Lind K.; Bergemann M.; Asplund M.; Mikolaitis Š.; Barklem P. S.; Masseron T.; De Laverny P.; Magrini L.; Edvardsson B.; Jönsson H.; Pickering J. C.; Ryde N.; Bayo Arán A.; Bensby T.; Casey A. R.; Feltzing S.; Jofré P.; Korn A. J.; Pancino E.; Damiani F.; Lanzafame A.; Lardo C.; Monaco L.; Morbidelli L.; Smiljanic R.; Worley C.; Zaggia S.; Randich S.; Gilmore G.F.Context. We describe the atomic and molecular data that were used for the abundance analyses of FGK-type stars carried out within the Gaia-ESO Public Spectroscopic Survey in the years 2012 to 2019. The Gaia-ESO Survey is one among several current and future stellar spectroscopic surveys producing abundances for Milky-Way stars on an industrial scale. Aims. We present an unprecedented effort to create a homogeneous common line list, which was used by several abundance analysis groups using different radiative transfer codes to calculate synthetic spectra and equivalent widths. The atomic data are accompanied by quality indicators and detailed references to the sources. The atomic and molecular data are made publicly available at the CDS. Methods. In general, experimental transition probabilities were preferred but theoretical values were also used. Astrophysical gf-values were avoided due to the model-dependence of such a procedure. For elements whose lines are significantly affected by a hyperfine structure or isotopic splitting, a concerted effort has been made to collate the necessary data for the individual line components. Synthetic stellar spectra calculated for the Sun and Arcturus were used to assess the blending properties of the lines. We also performed adetailed investigation of available data for line broadening due to collisions with neutral hydrogen atoms. Results. Among a subset of over 1300 lines of 35 elements in the wavelength ranges from 475 to 685 nm and from 850 to 895 nm, we identified about 200 lines of 24 species which have accurate gf-values and are free of blends in the spectra of the Sun and Arcturus. For the broadening due to collisions with neutral hydrogen, we recommend data based on Anstee-Barklem-O'Mara theory, where possible. We recommend avoiding lines of neutral species for which these are not available. Theoretical broadening data by R.L. Kurucz should be used for Sc II, Ti II, and Y II lines; additionally, for ionised rare-earth species, the Unsöld approximation with an enhancement factor of 1.5 for the line width can be used. Conclusions. The line list has proven to be a useful tool for abundance determinations based on the spectra obtained within the Gaia-ESO Survey, as well as other spectroscopic projects. Accuracies below 0.2 dex are regularly achieved, where part of the uncertainties are due to differences in the employed analysis methods. Desirable improvements in atomic data were identified for a number of species, most importantly Al I, S I, and Cr II, but also Na I, Si I, Ca II, and Ni I.Ítem The Gaia-ESO Survey: Churning through the Milky Way(EDP Sciences, 2018-01) Hayden M.R.; Recio-Blanco A.; De Laverny P.; Mikolaitis S.; Guiglion G.; Randich S.; Bayo A.; Bensby T.; Bergemann M.; Bragaglia A.; Casey A.; Costado M.; Feltzing S.; Franciosini E.; Hourihane A.; Jofre P.; Koposov S.; Kordopatis G.; Lanzafame A.; Lardo C.; Lewis J.; Lind K.; Magrini L.; Monaco L.; Morbidelli L.; Pancino E.; Sacco G.; Stonkute E.; Worley C.C.; Zwitter T.; Hill V.; Gilmore G.Context. There have been conflicting results with respect to the extent that radial migration has played in the evolution of the Galaxy. Additionally, observations of the solar neighborhood have shown evidence of a merger in the past history of the Milky Way that drives enhanced radial migration. Aims. We attempt to determine the relative fraction of stars that have undergone significant radial migration by studying the orbital properties of metal-rich ([Fe/H] > 0.1) stars within 2 kpc of the Sun. We also aim to investigate the kinematic properties, such as velocity dispersion and orbital parameters, of stellar populations near the Sun as a function of [Mg/Fe] and [Fe/H], which could show evidence of a major merger in the past history of the Milky Way. Methods. We used a sample of more than 3000 stars selected from the fourth internal data release of the Gaia-ESO Survey. We used the stellar parameters from the Gaia-ESO Survey along with proper motions from PPMXL to determine distances, kinematics, and orbital properties for these stars to analyze the chemodynamic properties of stellar populations near the Sun. Results. Analyzing the kinematics of the most metal-rich stars ([Fe/H] > 0.1), we find that more than half have small eccentricities (e< 0.2) or are on nearly circular orbits. Slightly more than 20% of the metal-rich stars have perigalacticons Rp> 7 kpc. We find that the highest [Mg/Fe], metal-poor populations have lower vertical and radial velocity dispersions compared to lower [Mg/Fe] populations of similar metallicity by ~10 km s-1. The median eccentricity increases linearly with [Mg/Fe] across all metallicities, while the perigalacticon decreases with increasing [Mg/Fe] for all metallicities. Finally, the most [Mg/Fe]-rich stars are found to have significant asymmetric drift and rotate more than 40 km s-1 slower than stars with lower [Mg/Fe] ratios. Conclusions. While our results cannot constrain how far stars have migrated, we propose that migration processes are likely to have played an important role in the evolution of the Milky Way, with metal-rich stars migrating from the inner disk toward to solar neighborhood and past mergers potentially driving enhanced migration of older stellar populations in the disk. © ESO, 2018.Ítem The Gaia-ESO survey: Matching chemodynamical simulations to observations of the Milky Way(Oxford University Press, 2018-01) Thompson B.B.; Few C.G.; Bergemann M.; Gibson B.K.; MacFarlane B.A.; Serenelli A.; Gilmore G.; Randich S.; Vallenari A.; Alfaro E.J.; Bensby T.I.; Francois P.; Korn A.J.; Bayo A.; Carraro G.; Casey A.R.; Costado M.T.; Donati P.; Franciosini E.; Frasca A.; Hourihane A.; Jofrè P.; Hill V.; Heiter U.; Koposov S.E.; Lanzafame A.; Lardo C.; de Laverny P.; Lewis J.; Magrini L.; Marconi G.; Masseron T.; Monaco L.; Morbidelli L.; Pancino E.; Prisinzano L.; Recio-Blanco A.; Sacco G.; Sousa S.G.; Tautvaišiene G.; Worley C.C.; Zaggia S.The typical methodology for comparing simulated galaxies with observational surveys is usually to apply a spatial selection to the simulation to mimic the region of interest covered by a comparable observational survey sample. In this work, we compare this approach with a more sophisticated post-processing in which the observational uncertainties and selection effects (photometric, surface gravity and effective temperature) are taken into account. We compare a 'solar neighbourhood analogue' region in a model MilkyWay-like galaxy simulated with RAMSES-CH with fourth release Gaia-ESO survey data. We find that a simple spatial cut alone is insufficient and that the observational uncertainties must be accounted for in the comparison. This is particularly true when the scale of uncertainty is large compared to the dynamic range of the data, e.g. in our comparison, the [Mg/Fe] distribution is affected much more than the more accurately determined [Fe/H] distribution. Despite clear differences in the underlying distributions of elemental abundances between simulation and observation, incorporating scatter to our simulation results to mimic observational uncertainty produces reasonable agreement. The quite complete nature of the Gaia-ESO survey means that the selection function has minimal impact on the distribution of observed age and metal abundances but this would become increasingly more important for surveys with narrower selection functions. © 2017 The Author(s).