Logotipo del repositorio
  • Español
  • English
  • Iniciar sesión
    Ayuda

    Instrucciones:

    El Repositorio Institucional Académico (RIA) de la Universidad Andrés Bello, es un recurso de acceso abierto. No obstante, y de acuerdo con la ley chilena vigente sobre propiedad intelectual, mantiene en acceso restringido diversos documentos, los cuales sólo pueden ser consultados por la comunidad universitaria registrada. Para poder acceder a éstos, verificar el tipo de usuario y método de acceso, siguiendo las instrucciones que se detallan a continuación:

    • Si eres investigador, docente o funcionario con correo @unab.cl, ingresa utilizando tu usuario de computador o intranet (nombre de usuario sin incluir @unab.cl) y clave.
    • Si eres alumno, profesor adjunto o exalumno con correo @uandresbello.edu, debes registrarte primero, pinchando donde dice Nuevo usuario. Una vez registrado y obtenida el alta, ingresa con el correo electrónico institucional y la clave elegida. El registro se debe realizar utilizando la cuenta de correo institucional, no serán válidas cuentas gmail, hotmail o cualquier otro proveedor.
    • Si eres usuario externo, contactar directamente a repositorio@unab.cl
    o
    ¿Nuevo Usuario? Pulse aquí para registrarse¿Has olvidado tu contraseña?
  • Comunidades
  • Todo RIA
  • Contacto
  • Procedimientos de publicaciónDerecho de autorPolíticas del Repositorio
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Bignone, Lucas"

Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    Ítem
    Galactic archaeology in the 21st century : unveiling accretion in the MW disc
    (Universidad Andrés Bello, 2022) Tronrud, Thorold; Tissera, Patricia; Gómez, Facundo A.; Gómez, Matías; Bignone, Lucas; Facultad de Ciencias Exactas
    The evolution of large galaxies such as the Milky Way (MW) in Λ Cold Dark Matter (ΛCDM) cosmology is driven by interactions with other galaxies. These interactions affect the structure of the galaxy in long-lasting ways, not only forming the stellar halo, and modifying the size and characteristics of the stellar disc, but also contributing gas that fuels star formation and depositing stars directly into the galaxy. This stellar debris, formed outside the galaxy in which they now reside (a.k.a. ex-situ), retain the chemical fingerprint of the environment in which they formed, leaving them distinct from the stars that were formed within the primary galaxy (a.k.a. in-situ). If these ex-situ stars are located beyond the disc, in the stellar halo, the distributions they occupy in space — based on the kinematics of their progenitor object — may be readily apparent as streams or great circles surrounding the primary galaxy. A population of ex-situ stars are also expected to reside in the stellar disc, even at high circularities. These stars have been found in simulations to be deposited by relatively few massive mergers, but finding them poses a challenge in this dense region. I propose a method, based on training and utilizing neural networks, to classify disc stars as in- or ex-situ based on their chemical parameters. The use of this method is motivated by my research into the effects mergers and accretion have on the galactic stellar disc of a suite of simulated MW-like galaxies, in which I demonstrate that accretion events and accreted stars cause observable changes to calculated metallicity gradients, and can cause disagreements in correlations between observed parameters based on the ages of the stars being used. Galactic discs form inside-out, starting small and slowly expanding with new star formation at the outer edges. This imparts a natural negative age gradient. Stars that have been deposited onto the disc will not necessarily follow this age gradient, which is one of the primary drivers of the stellar disc’s metallicity gradient. These ex-situ stars drive several age-specific correlations between metallicity gradient and 𝑅 −1 eff and 𝜆 ★ gal that vanish entirely once these contaminants are removed. A chemistry-based method for flagging potentially-accreted stars will allow researchers to remove the bulk of these from their samples, which will allow them to examine the evolution of the galactic disc more finely. Furthermore, these flagged, ex-situ stars can be grouped by their characteristics, for attempts to discern early progenitors of the primary galaxy with significantly less noise from stars formed in-situ. I demonstrate that the Galactic Archaeology Neural Network (GANN) recovers usable fractions of nearly every contributor to the suite of simulated stellar discs. Thus, a catalogue of stars flagged by GANN will contain most of the merger information that is present in the stellar disc of a galaxy. Future applications of this method could aid in the discovery of many ancient remnants, and broaden our understanding of how our galaxy formed.