Examinando por Autor "Bovy, Jo"
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Ítem The origin of accreted stellar halo populations in the milky way using apogee, gaia, and the eagle simulations(Monthly Notices of the Royal Astronomical Society, 2019-01-21) Mackereth, J. Ted; Schiavon, Ricardo P.; Pfeffer, Joel; Hayes, Christian R.; Bovy, Jo; Anguiano, Borja; Prieto, Carlos Allende; Hasselquist, Sten; Holtzman, Jon; Johnson, Jennifer A.; Majewski, Steven R.; O’Connell, Robert; Shetrone, Matthew; Tissera, Patricia B.; Fernandez-Trincado, J. G.Kinematics of halo stars. We show that ∼2/3 of nearby halo stars have high orbital eccentricities (e 0.8), and abundance patterns typical of massive Milky Way dwarf galaxy satellites today, characterized by relatively low [Fe/H], [Mg/Fe], [Al/Fe], and [Ni/Fe]. The trend followed by high-e stars in the [Mg/Fe]-[Fe/H] plane shows a change of slope at [Fe/H] ∼ -1.3, which is also typical of stellar populations from relatively massive dwarf galaxies. Low-e stars exhibit no such change of slope within the observed [Fe/H] range and show slightly higher abundances of Mg, Al, and Ni. Unlike their low-e counterparts, high-e stars show slightly retrograde motion, make higher vertical excursions, and reach larger apocentre radii. By comparing the position in [Mg/Fe]-[Fe/H] space of high-e stars with those of accreted galaxies from the EAGLE suite of cosmological simulations, we constrain the mass of the accreted satellite to be in the range 108.5≲ M ≲ 109M⊙ We show that the median orbital eccentricities of debris are largely unchanged since merger time, implying that this accretion event likely happened at z≲1.5. The exact nature of the low-e population is unclear, but we hypothesize that it is a combination of in situ star formation, high-|z| disc stars, lower mass accretion events, and contamination by the low-e tail of the high-e population. Finally, our results imply that the accretion history of the Milky Way was quite unusual.Ítem The SDSS-IV extended baryon oscillation spectroscopic survey: Overview and early data(Institute of Physics Publishing, 2016-02) Dawson, Kyle S.; Kneib, Jean-Paul; Percival, Will J.; Alam, Shadab; Albareti, Franco D.; Anderson, Scott F.; Armengaud, Eric; Aubourg, Éric; Bailey, Stephen; Bautista, Julian E.; Berlind, Andreas A.; Bershady, Matthew A.; Beutler, Florian; Bizyaev, Dmitry; Blanton, Michael R.; Blomqvist, Michael; Bolton, Adam S.; Bovy, Jo; Brandt, W.N.; Brinkmann, Jon; Brownstein, Joel R.; Burtin, Etienne; Busca, N.G.; Cai, Zheng; Chuang, Chia-Hsun; Clerc, Nicolas; Comparat, Johan; Cope, Frances; Croft, Rupert A. C.; Cruz-Gonzalez, Irene; Da Costa, Luiz N; Cousinou, Marie-Claude; Darling, Jeremy; De La MacOrra, Axel; De La Torre, Sylvain; Delubac, Timothée; Du Mas Des Bourboux, Hélion; Dwelly, Tom; Ealet, Anne; Eisenstein, Daniel J.; Eracleous, Michael; Escoffier, S.; Fan, Xiaohui; Finoguenov, Alexis; Font-Ribera, Andreu; Frinchaboy, Peter; Gaulme, Patrick; Georgakakis, Antonis; Green, Paul; Guo, Hong; Guy, Julien; Ho, Shirley; Holder, Diana; Huehnerhoff, Joe; Hutchinson, Timothy; Jing, Yipeng; Jullo, Eric; Kamble, Vikrant; Kinemuchi, Karen; Kirkby, David; Kitaura, Francisco-Shu; Klaene, Mark A.; Laher, Russ R.; Lang, Dustin; Laurent, Pierre; Goff, Jean-Marc Le; Li, Cheng; Liang, Yu; Lima, Marcos; Lin, Qiufan; Lin, Weipeng; Lin, Yen-Ting; Long, Daniel C.; Lundgren, Britt; MacDonald, Nicholas; Maia, Marcio Antonio Geimba; Malanushenko, Elena; Malanushenko, Viktor; Mariappan, Vivek; McBride, Cameron K.; McGreer, Ian D.; Ménard, Brice; Merloni, Andrea; Meza, Andres; Montero-Dorta, Antonio D.; Muna, Demitri; Myers, Adam D.; Nandra, Kirpal; Naugle, Tracy; Newman, Jeffrey A.; Noterdaeme, Pasquier; Nugent, Peter; Ogando, Ricardo; Olmstead, Matthew D.; Oravetz, Audrey; Oravetz, Daniel J.; Padmanabhan, Nikhil; Palanque-Delabrouille, Nathalie; Pan, Kaike; Parejko, John K.; Pâris, Isabelle; Peacock, John A.; Petitjean, Patrick; Pieri, Matthew M.; Pisani, Alice; Prada, Francisco; Prakash, Abhishek; Raichoor, Anand; Reid, Beth; Rich, James; Ridl, Jethro; Rodriguez-Torres, Sergio; Rosell, Aurelio Carnero; Ross, Ashley J.; Rossi, Graziano; Ruan, John; Salvato, Mara; Sayres, Conor; Schneider, Donald P.; Schlegel, David J.; Seljak, Uros; Seo, Hee-Jong; Sesar, Branimir; Shandera, Sarah; Shu, Yiping; Slosar, Anže; Sobreira, Flavia; Streblyanska, Alina; Suzuki, Nao; Taylor, Donna; Tao, Charling; Tinker, Jeremy L.; Tojeiro, Rita; Vargas-Magaña, Mariana; Wang, Yuting; Weaver, Benjamin A.; Weinberg, David H.; White, Martin; Wood-Vasey, W.M.; Yeche, Christophe; Zhai, Zhongxu; Zhao, Cheng; Zhao, Gong-Bo; Zheng, Zheng; Zhu, Guangtun Ben; Zou, HuIn a six-year program started in 2014 July, the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) will conduct novel cosmological observations using the BOSS spectrograph at Apache Point Observatory. These observations will be conducted simultaneously with the Time Domain Spectroscopic Survey (TDSS) designed for variability studies and the Spectroscopic Identification of eROSITA Sources (SPIDERS) program designed for studies of X-ray sources. In particular, eBOSS will measure with percent-level precision the distance-redshift relation with baryon acoustic oscillations (BAO) in the clustering of matter. eBOSS will use four different tracers of the underlying matter density field to vastly expand the volume covered by BOSS and map the large-scale structures over the relatively unconstrained redshift range 0.6 < z < 2.2. Using more than 250,000 new, spectroscopically confirmed luminous red galaxies at a median redshift z = 0.72, we project that eBOSS will yield measurements of the angular diameter distance dA(z) to an accuracy of 1.2% and measurements of H(z) to 2.1% when combined with the z > 0.6 sample of BOSS galaxies. With ∼195,000 new emission line galaxy redshifts, we expect BAO measurements of dA(z) to an accuracy of 3.1% and H(z) to 4.7% at an effective redshift of z = 0.87. A sample of more than 500,000 spectroscopically confirmed quasars will provide the first BAO distance measurements over the redshift range 0.9 < z < 2.2, with expected precision of 2.8% and 4.2% on dA(z) and H(z), respectively. Finally, with 60,000 new quasars and re-observation of 60,000 BOSS quasars, we will obtain new Lyα forest measurements at redshifts z > 2.1; these new data will enhance the precision of dA(z) and H(z) at z > 2.1 by a factor of 1.44 relative to BOSS. Furthermore, eBOSS will provide improved tests of General Relativity on cosmological scales through redshift-space distortion measurements, improved tests for non Gaussianity in the primordial density field, and new constraints on the summed mass of all neutrino species. Here, we provide an overview of the cosmological goals, spectroscopic target sample, demonstration of spectral quality from early data, and projected cosmological constraints from eBOSS.Ítem The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar, and APOGEE-2 Data(American Astronomical Society, 2022-04-01) Abdurro'Uf; Accetta, Katherine; Aerts, Conny; Silva Aguirre, Víctor; Ahumada, Romina; Ajgaonkar, Nikhil; Filiz Ak, N.; Alam, Shadab; Allende Prieto, Carlos; Almeida, Andrés; Anders, Friedrich; Anderson, Scott F.; Andrews, Brett H.; Anguiano, Borja; Aquino-Ortíz, Erik; Aragón-Salamanca, Alfonso; Argudo-Fernández, Maria; Ata, Metin; Aubert, Marie; Avila-Reese, Vladimir; Badenes, Carles; Barbá, Rodolfo H.; Barger, Kat; Barrera-Ballesteros, Jorge K.; Beaton, Rachael L.; Beers, Timothy C.; Belfiore, Francesco; Bender, Chad F.; Bernardi, Mariangela; Bershady, Matthew A.; Beutler, Florian; Bidin, Christian Moni; Bird, Jonathan C.; Bizyaev, Dmitry; Blanc, Guillermo A.; Blanton, Michael R.; Boardman, Nicholas Fraser; Bolton, Adam S.; Boquien, Médéric; Borissova, Jura; Bovy, Jo; Brandt, W.N.; Brown, Jordan; Brownstein, Joel R.; Brusa, Marcella; Buchner, Johannes; Bundy, Kevin; Burchett, Joseph N.; Bureau, Martin; Burgasser, Adam; Cabang, Tuesday K.; Campbell, Stephanie; Cappellari, Michele; Carlberg, Joleen K.; Wanderley, Fábio Carneiro; Carrera, Ricardo; Cash, Jennifer; Chen, Yan-Ping; Chen, Wei-Huai; Cherinka, BrianThis paper documents the seventeenth data release (DR17) from the Sloan Digital Sky Surveys; the fifth and final release from the fourth phase (SDSS-IV). DR17 contains the complete release of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which reached its goal of surveying over 10,000 nearby galaxies. The complete release of the MaNGA Stellar Library accompanies this data, providing observations of almost 30,000 stars through the MaNGA instrument during bright time. DR17 also contains the complete release of the Apache Point Observatory Galactic Evolution Experiment 2 survey that publicly releases infrared spectra of over 650,000 stars. The main sample from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), as well as the subsurvey Time Domain Spectroscopic Survey data were fully released in DR16. New single-fiber optical spectroscopy released in DR17 is from the SPectroscipic IDentification of ERosita Survey subsurvey and the eBOSS-RM program. Along with the primary data sets, DR17 includes 25 new or updated value-added catalogs. This paper concludes the release of SDSS-IV survey data. SDSS continues into its fifth phase with observations already underway for the Milky Way Mapper, Local Volume Mapper, and Black Hole Mapper surveys. © 2022. The Author(s). Published by the American Astronomical Society.