Examinando por Autor "Braga, V.F."
Mostrando 1 - 8 de 8
Resultados por página
Opciones de ordenación
Ítem Chemical Compositions of Field and Globular Cluster RR Lyrae Stars. I. NGC 3201(Institute of Physics Publishing, 2018-09) Magurno, D.; Sneden, C.; Braga, V.F.; Bono, G.; Mateo, M.; Persson, S.E.; Dall'Ora, M.; Marengo, M.; Monelli, M.; Neeley, J.R.We present a detailed spectroscopic analysis of horizontal branch stars in the globular cluster NGC 3201. We collected optical (4580-5330), high-resolution (∼34,000), high signal-to-noise ratio (∼200) spectra for 11 RR Lyrae stars and one red horizontal branch star with the multifiber spectrograph M2FS with the 6.5 m Magellan telescope at the Las Campanas Observatory. From measured equivalent widths, we derived atmospheric parameters and abundance ratios for (Mg, Ca, and Ti), iron-peak (Sc, Cr, Ni, and Zn), and s-process (Y) elements. We found that NGC 3201 is a homogeneous, monometallic ([Fe/H] = -1.47 ± 0.04), enhanced ([/Fe] = 0.37 ± 0.04) cluster. The relative abundances of the iron-peak and s-process elements were found to be consistent with solar values. In comparison with other large stellar samples, NGC 3201 RR Lyraes have similar chemical enrichment histories as do those of other old (t ≥ 10 Gyr) Halo components (globular clusters; red giants; blue and red horizontal branch stars; and RR Lyraes). We also provided a new average radial velocity estimate for NGC 3201 by using a template velocity curve to overcome the limit of single-epoch measurements of variable stars: Vrad = 494 ± 2 km s-1 (σ = 8 km s-1). © 2018. The American Astronomical Society. All rights reserved.Ítem On a New Theoretical Framework for RR Lyrae Stars. II. Mid-infrared Period-Luminosity-Metallicity Relations(Institute of Physics Publishing, 2017-06) Neeley, J.R.; Marengo, M.; Bono, G.; Braga, V.F.; Dall'ora, M.; Magurno, D.; Marconi, M.; Trueba, N.; Tognelli, E.; Moroni, P.G.P.; Beaton, R.L.; Freedman, W.L.; Madore, B.F.; Monson, A.J.; Scowcroft, V.; Seibert, M.; Stetson, P.B.We present new theoretical period-luminosity-metallicity (PLZ) relations for RR Lyræ stars (RRLs) at Spitzer and WISE wavelengths. The PLZ relations were derived using nonlinear, time-dependent convective hydrodynamical models for a broad range of metal abundances (Z = 0.0001-0.0198). In deriving the light curves, we tested two sets of atmospheric models and found no significant difference between the resulting mean magnitudes. We also compare our theoretical relations to empirical relations derived from RRLs in both the field and in the globular cluster M4. Our theoretical PLZ relations were combined with multi-wavelength observations to simultaneously fit the distance modulus, μ 0, and extinction, A V, of both the individual Galactic RRL and of the cluster M4. The results for the Galactic RRL are consistent with trigonometric parallax measurements from Gaia's first data release. For M4, we find a distance modulus of μ 0 = 11.257 ± 0.035 mag with A V = 1.45 ± 0.12 mag, which is consistent with measurements from other distance indicators. This analysis has shown that, when considering a sample covering a range of iron abundances, the metallicity spread introduces a dispersion in the PL relation on the order of 0.13 mag. However, if this metallicity component is accounted for in a PLZ relation, the dispersion is reduced to ∼0.02 mag at mid-infrared wavelengths.Ítem On the Chemical Abundances of Miras in Clusters: V1 in the Metal-rich Globular NGC 5927(Institute of Physics Publishing, 2018-03) D'Orazi, V.; Magurno, D.; Bono, G.; Matsunaga, N.; Braga, V.F.; Elgueta, S.S.; Fukue, K.; Hamano, S.; Inno, L.; Kobayashi, N.; Kondo, S.; Monelli, M.; Nonino, M.; Przybilla, N.; Sameshima, H.; Saviane, I.; Taniguchi, D.; Thevenin, F.; Urbaneja-Perez, M.; Watase, A.; Arai, A.; Bergemann, M.; Buonanno, R.; Dall'Ora, M.; Da Silva, R.; Fabrizio, M.; Ferraro, I.; Fiorentino, G.; Francois, P.; Gilmozzi, R.; Iannicola, G.; Ikeda, Y.; Jian, M.; Kawakita, H.; Kudritzki, R.P.; Lemasle, B.; Marengo, M.; Marinoni, S.; Martínez-Vázquez, C.E.; Minniti, D.; Neeley, J.; Otsubo, S.; Prieto, J.L.; Proxauf, B.; Romaniello, M.; Sanna, N.; Sneden, C.; Takenaka, K.; Tsujimoto, T.; Valenti, E.; Yasui, C.; Yoshikawa, T.; Zoccali, M.We present the first spectroscopic abundance determination of iron, α-elements (Si, Ca, and Ti), and sodium for the Mira variable V1 in the metal-rich globular cluster NGC 5927. We use high-resolution (R ∼ 28,000), high signal-to-noise ratio (∼200) spectra collected with WINERED, a near-infrared (NIR) spectrograph covering simultaneously the wavelength range 0.91-1.35 μm. The effective temperature and the surface gravity at the pulsation phase of the spectroscopic observation were estimated using both optical (V) and NIR time-series photometric data. We found that the Mira is metal-rich ([Fe/H] = -0.55 ± 0.15) and moderately α-enhanced ([α/Fe] = 0.15 ± 0.01, σ = 0.2). These values agree quite well with the mean cluster abundances based on high-resolution optical spectra of several cluster red giants available in the literature ([Fe/H] = - 0.47 ± 0.06, [α/Fe] = + 0.24 ± 0.05). We also found a Na abundance of +0.35 ±0.20 that is higher than the mean cluster abundance based on optical spectra (+0.18 ± 0.13). However, the lack of similar spectra for cluster red giants and that of corrections for departures from local thermodynamical equilibrium prevents us from establishing whether the difference is intrinsic or connected with multiple populations. These findings indicate a strong similarity between optical and NIR metallicity scales in spite of the difference in the experimental equipment, data analysis, and in the adopted spectroscopic diagnostics. © 2018. The American Astronomical Society. All rights reserved.Ítem On the Impact of Helium Content on the RR Lyrae Distance Scale(Institute of Physics Publishing, 2018-09) Marconi, M.; Bono, G.; Pietrinferni, A.; Braga, V.F.; Castellani, M.; Stellingwerf, R.F.We constructed new sets of He-enhanced (Y = 0.30, Y = 0.40) nonlinear, time-dependent convective hydrodynamical models of RR Lyrae (RRL) stars covering a broad range in metal abundances (Z = 0.0001-0.02). The increase in He content from the canonical value (Y = 0.245) to Y = 0.30-0.40 causes a simultaneous increase in stellar luminosity and in pulsation period. To investigate the dependence of the RRL distance scale on the He abundance, we computed new optical (RI) and near-infrared (JHK) Period-luminosity-metallicity-helium relations. Interestingly enough, the increase in He content causes a minimal change in the coefficients of both period and metallicity terms, since canonical and He-enhanced models obey similar PLZ relations. On the contrary, the classical B-And V-band mean magnitude metallicity relations and the R-band PLZ relation display a significant dependence on the He content. The He-enhanced models are, at fixed metal content, 0.2-0.5 mag brighter than canonical ones. This variation is only marginally affected by evolutionary effects. The quoted distance diagnostics once calibrated with trigonometric parallaxes (Gaia) will provide the opportunity to estimate the He content of field and cluster RRLs. Moreover, the use of either spectroscopic or photometric metal abundances will pave the way to new empirical constraints on the universality of the helium-To-metal enrichment ratio in old (t10 Gyr) stellar tracers. © 2018. The American Astronomical Society. All rights reserved.Ítem On the RR Lyrae Stars in Globulars. V. the Complete Near-infrared (JHK s) Census of ω Centauri RR Lyrae Variables(nstitute of Physics Publishing, 2018-03) Braga, V.F.; Stetson, P.B.; Bono, G.; Dall'Ora, M.; Ferraro, I.; Fiorentino, G.; Iannicola, G.; Marconi, M.; Marengo, M.; Monson, A.J.; Neeley, J.; Persson, S.E.; Beaton, R.L.; Buonanno, R.; Calamida, A.; Castellani, M.; Carlo, E.D.; Fabrizio, M.; Freedman, W.L.; Inno, L.; Madore, B.F.; Magurno, D.; Marchetti, E.; Marinoni, S.; Marrese, P.; Matsunaga, N.; Minniti, D.; Monelli, M.; Nonino, M.; Piersimoni, A.M.; Pietrinferni, A.; Prada-Moroni, P.; Pulone, L.; Stellingwerf, R.; Tognelli, E.; Walker, A.R.; Valenti, E.; Zoccali, M.We present a new complete near-infrared (NIR, JHK s) census of RR Lyrae stars (RRLs) in the globular ω Cen (NGC 5139). We collected 15,472 JHK s images with 4-8 m class telescopes over 15 years (2000-2015) covering a sky area around the cluster center of 60 ×34 arcmin2. These images provided calibrated photometry for 182 out of the 198 cluster RRL candidates with 10 to 60 measurements per band. We also provide new homogeneous estimates of the photometric amplitude for 180 (J), 176 (H) and 174 (K s) RRLs. These data were supplemented with single-epoch JK s magnitudes from VHS and with single-epoch H magnitudes from 2MASS. Using proprietary optical and NIR data together with new optical light curves (ASAS-SN) we also updated pulsation periods for 59 candidate RRLs. As a whole, we provide JHK s magnitudes for 90 RRab (fundamentals), 103 RRc (first overtones) and one RRd (mixed-mode pulsator). We found that NIR/optical photometric amplitude ratios increase when moving from first overtone to fundamental and to long-period (P > 0.7 days) fundamental RRLs. Using predicted period-luminosity-metallicity relations, we derive a true distance modulus of 13.674 ± 0.008 ±0.038 mag (statistical error and standard deviation of the median) based on spectroscopic iron abundances, and of 13.698 ±0.004 ±0.048 mag based on photometric iron abundances. We also found evidence of possible systematics at the 5%-10% level in the zero-point of the period-luminosity relations based on the five calibrating RRLs whose parallaxes had been determined with the HST. © 2018. The American Astronomical Society. All rights reserved.Ítem Structure and kinematics of Type II Cepheids in the Galactic bulge based on near-infrared VVV data(EDP Sciences, 2018-11) Braga, V.F.; Bhardwaj, A.; Contreras Ramos, R.; Minniti, D.; Bono, G.; De Grijs, R.; Minniti, J.H.; Rejkuba, M.Context. Type II Cepheids (T2Cs) are radially pulsating variables that trace old stellar populations and provide distance estimates through their period-luminosity (PL) relation. Aims. We trace the structure of old stellar population in the Galactic bulge using new distance estimates and kinematic properties of T2Cs. Methods. We present new near-infrared photometry of T2Cs in the bulge from the VISTA Variables in the Vía Láctea survey (VVV). We provide the largest sample (894 stars) of T2Cs with JHK s observations that have accurate periods from the Optical Gravitational Lensing Experiment (OGLE) catalog. Our analysis makes use of the K s -band time-series observations to estimate mean magnitudes and individual distances by means of the PL relation. To constrain the kinematic properties of our targets, we complement our analysis with proper motions based on both the VVV and Gaia Data Release 2. Results. We derive an empirical K s -band PL relation that depends on Galactic longitude and latitude: K s0 = (10.66 ± 0.02) - (2.21 ± 0.03)·(log P-1.2)-(0.020±0.003)·l+(0.050±0.008)·|b| mag; individual extinction corrections are based on a 3D reddening map. Our targets display a centrally concentrated distribution, with solid evidence of ellipsoidal symmetry - similar to the RR Lyræ ellipsoid - and a few halo outliers up to ≳ 100 kpc. We obtain a distance from the Galactic center of R 0 = 8.46 ± 0.03(stat.) ± 0.11(syst.) kpc. We also find evidence that the bulge T2Cs belong to a kinematically hot population, as the tangential velocity components (σv l = 104.2 ± 3.0kms -1 and σv b = 96.8 ± 5.5kms -1 ) agree within 1.2σ. Moreover, the difference between absolute and relative proper motion is in good agreement with the proper motion of Sgr A ∗ from VLBA measures. Conclusions. We conclude that bulge T2Cs display an ellipsoidal spatial distribution and have kinematics similar to RR Lyræ stars, which are other tracers of the old, low-mass stellar population. T2Cs also provide an estimate of R 0 that agrees excellently well with the literature, taking account of the reddening law. © ESO 2018.Ítem The VVV survey: Long-period variable stars: I. Photometric catalog of ten VVV/OGLE tiles(EDP Sciences, 2022-04-01) Nikzat, F.; Ferreira Lopes, C.E.; Catelan, M.; Contreras Ramos, R.; Zoccali, M.; Rojas-Arriagada, A.; Braga, V.F.; Minniti, D.; Borissova, J.; Becker, I.Context. Long-period variable stars (LPVs) are pulsating red giants, primarily in the asymptotic giant branch phase, and they include both Miras and semi-regular variables (SRVs). Their period-age and period-luminosity relations enable us to trace different stellar populations, as they are intrinsically very bright and cover a wide range in distances and ages. Aims. The purpose of this study is to establish a census of LPV stars in a region close to the Galactic center, using the six-year database of the Vista Variables in the Vía Láctea (VVV) ESO Public Survey, as well as to describe the methodology that was employed to search for and characterize LPVs using VVV data. Near-IR surveys such as VVV provide a unique opportunity to probe the high-extinction innermost regions of the Milky Way. The detection and analysis of the intrinsically bright Miras in this region could provide us with an excellent probe of the properties of the Milky Way far behind its bulge. Methods. We used point-spread function photometry for all available Ks-band images in ten VVV tiles, covering 16.42 in total, overlapping fields observed in the course of the Optical Gravitational Lensing Experiment (OGLE)-III survey. We designed a method to select LPV candidates, and we used the known variables from OGLE-III and other known variables from the literature to test our approach. The reduced I2 statistic, along with the flux-independent index K(fi), were used in our analysis. The Lomb-Scargle period search method, Fourier analysis, template fitting, and visual inspection were then performed to refine our sample and characterize the properties of the stars included in our catalog. Results. A final sample of 130 Mira candidates, of which 129 are new discoveries, was thus obtained, with periods in the range between about 80 and 1400 days. Moreover, a sample of 1013 LPV candidates is also presented, whose periods are however not sufficiently constrained by the available data. A fraction of the latter may eventually turn out to be SRVs. Ages are measured for these stars based on a reassessment of the period-age relations available in the literature. The Miras in our catalog include 18 stars satisfying the requirements to serve as reliable distance indicators and which are not saturated in the VVV Ks-band images. Their distances are accordingly derived and discussed. A number of objects that are seemingly placed far behind the Milky Waya' s bulge was detected. © ESO 2022.Ítem Using classical cepheids to study the far side of the Milky Way disk(EDP Sciences, 2020-08) Minniti, J.H.; Sbordone, L.; Rojas-Arriagada, A.; Zoccali, M.; Contreras Ramos, R.; Minniti, D.; Marconi, M.; Braga, V.F.; Catelan, M.; Duffau, S.; Gieren, W.; Valcarce, A.A.R.Context. Much of what we know about the Milky Way disk is based on studies of the solar vicinity. The structure, kinematics, and chemical composition of the far side of the Galactic disk, beyond the bulge, are still to be revealed. Aims. Classical Cepheids (CCs) are young and luminous standard candles. We aim to use a well-characterized sample of these variable stars to study the present-time properties of the far side of the Galactic disk. Methods. A sample of 45 Cepheid variable star candidates were selected from near-infrared time series photometry obtained by the VVV survey. We characterized this sample using high quality near-infrared spectra obtained with VLT/X-shooter. The spectroscopic data was used to derive radial velocities and iron abundances for all the sample Cepheids. This allowed us to separate the CCs, which are metal rich and with kinematics consistent with the disk rotation, from type II Cepheids (T2Cs), which are more metal poor and with different kinematics. Results. We estimated individual distances and extinctions using VVV photometry and period-luminosity relations, reporting the characterization of 30 CCs located on the far side of the Galactic disk, plus 8 T2Cs mainly located in the bulge region, of which 10 CCs and 4 T2Cs are new discoveries. The remaining seven stars are probably misclassified foreground ellipsoidal binaries. This is the first sizeable sample of CCs in this distant region of our Galaxy that has been spectroscopically confirmed. We use their positions, kinematics, and metallicities to confirm that the general properties of the far disk are similar to those of the well-studied disk on the solar side of the Galaxy. In addition, we derive for the first time the radial metallicity gradient on the disk’s far side. Considering all the CCs with RGC < 17 kpc, we measure a gradient with a slope of −0.062 dex kpc−1 and an intercept of +0.59 dex, which is in agreement with previous determinations based on CCs on the near side of the disk.