Examinando por Autor "Brandan, Enrique"
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Ítem Andrographolide attenuates skeletal muscle dystrophy in mdx mice and increases efficiency of cell therapy by reducing fibrosis(BioMed Central Ltd., 2014-03) Cabrera, Daniel; Gutiérrez, Jaime; Cabello-Verrugio, Claudio; Morales, María G.; Mezzano, Sergio; Fadic, Ricardo; Casar, Juan C.; Hancke, Juan L.; Brandan, EnriqueBackground: Duchenne muscular dystrophy (DMD) is characterized by the absence of the cytoskeletal protein dystrophin, muscle wasting, increased transforming growth factor type beta (TGF-β) signaling, and fibrosis. At the present time, the only clinically validated treatments for DMD are glucocorticoids. These drugs prolong muscle strength and ambulation of patients for a short term only and have severe adverse effects. Andrographolide, a bicyclic diterpenoid lactone, has traditionally been used for the treatment of colds, fever, laryngitis, and other infections with no or minimal side effects. We determined whether andrographolide treatment of mdx mice, an animal model for DMD, affects muscle damage, physiology, fibrosis, and efficiency of cell therapy. Methods: mdx mice were treated with andrographolide for three months and skeletal muscle histology, creatine kinase activity, and permeability of muscle fibers were evaluated. Fibrosis and TGF-β signaling were evaluated by indirect immunofluorescence and Western blot analyses. Muscle strength was determined in isolated skeletal muscles and by a running test. Efficiency of cell therapy was determined by grafting isolated skeletal muscle satellite cells onto the tibialis anterior of mdx mice. Results: mdx mice treated with andrographolide exhibited less severe muscular dystrophy than untreated dystrophic mice. They performed better in an exercise endurance test and had improved muscle strength in isolated muscles, reduced skeletal muscle impairment, diminished fibrosis and a significant reduction in TGF-β signaling. Moreover, andrographolide treatment of mdx mice improved grafting efficiency upon intramuscular injection of dystrophin-positive satellite cells. Conclusions: These results suggest that andrographolide could be used to improve quality of life in individuals with DMD.Ítem Erratum for: Transforming growth factor type-β inhibits Mas receptor expression in fibroblasts but not in myoblasts or differentiated myotubes; Relevance to fibrosis associated to muscular dystrophies [BioFactors, 2015 March/April; 42(2); 111-120, doi: 10.1002/biof.1208](BIFAE, 2015-05) Cofre, Catalina; José Acuña, María; Contreras, Osvaldo; Gabriela Morales, María; Riquelme, Cecilia; Bader, Michael; Santos, Robson; Cabello-Verrugio, Claudio; Brandan, EnriqueÍtem The inhibition of CTGF/CCN2 activity improves muscle and locomotor function in a murine ALS model(Oxford University Press, 2018-08) González, David; Correa, Lina M.; Court, Felipe A.; Cerpa, Waldo; Lipson, Kenneth E.; Van Zundert, Brigitte; Brandan, Enrique; Rebolledo, Daniela L.Amyotrophic lateral sclerosis (ALS) is a devastating adult-onset progressive neurodegenerative disease characterized by upper and lower motoneuron degeneration. A total of 20% of familial ALS (fALS) cases are explained by mutations in the superoxide dismutase 1 (SOD1) enzyme. Although more than 20 years have passed since the generation of the first ALS mouse model, the precise molecular mechanisms of ALS pathogenesis remain unknown. CTGF/CCN2 is a matricellular protein with associated fibrotic activity that is up-regulated in several chronic diseases. The inhibition of CTGF/CCN2 with the monoclonal neutralizing antibody FG-3019 reduces fibrosis in several chronic disorders including the mdx mice, a murine model for Duchenne muscular dystrophy (DMD). In this work, we show that there are increased levels of CTGF/CCN2 in skeletal muscle and spinal cord of hSOD1G93A mice. In this scenario, we show evidence that FG-3019 not only reduces fibrosis in skeletal muscle of hSOD1G93A mice, but also improves muscle and locomotor performance. We demonstrate that treatment with FG-3019 reduces muscle atrophy in hSOD1G93A mice. We also found improvement of neuromuscular junction (NMJ) innervation together with a reduction in myelin degeneration in the sciatic nerve, suggesting that alterations in nerve-muscle communication are partially improved in FG-3019-treated hSOD1G93A mice. Moreover, we also found that CTGF/CCN2 is expressed in astrocytes and neurons, predominantly in dorsal areas of spinal cord from symptomatic hSOD1G93A mice. Together, these results reveal that CTGF/CCN2 might be a novel therapeutic target to ameliorate symptoms and improve the quality of life of ALS patients. © The Author(s) 2018.