Examinando por Autor "Bravo, Soraya"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem DNA methylation and small interference RNAs participate in the regulation of MADS-box genes involved in dormancy in sweet cherry (Prunus avium L.)(Oxford University Press, 2017-12) Rothkegel, Karin; Sánchez, Evelyn; Montes, Christian; Greve, Macarena; Tapia, Sebastián; Bravo, Soraya; Prieto, Humberto; Almeida, Andréa MiyasakaEpigenetic modifications can yield information about connections between genotype, phenotype variation and environmental conditions. Bud dormancy release in temperate perennial fruit trees depends on internal and environmental signals such as cold accumulation and photoperiod. Previous investigations have noted the participation of epigenetic mechanisms in the control of this physiological process. We examined whether epigenetic modifications were modulated in MADS-box genes, potential candidates for the regulation of bud dormancy and flowering in sweet cherry (Prunus avium L.). We identified and cloned two MADS-box genes homologous to the already-characterized dormancy regulators DORMANCY-ASSOCIATED MADS-box (DAM3 and DAM5) from Prunus persica (L.) Batsch. Bisulfite sequencing of the identified genes (PavMADS1 and PavMADS2), Methylated DNA Immunoprecipitation and small RNA deep sequencing were performed to analyze the presence of DNA methylations that could be guided by non-coding RNAs in the floral buds exposed to differential chilling hours. The results obtained reveal an increase in the level of DNA methylation and abundance of matching small interference RNAs (siRNAs) in the promoter of PavMADS1 when the chilling requirement is complete. For the first intron and 5′ UTR of PavMADS1, de novo DNA methylation could be associated with the increase in the abundance of 24-nt siRNA matching the promoter area. Also, in the second large intron of PavMADS1, maintenance DNA methylation in all cytosine contexts is associated with the presence of homologous siRNAs in that zone. For PavMADS2, only maintenance methylation was present in the CG context, and no matching siRNAs were detected. Silencing of PavMADS1 and PavMADS2 coincided with an increase in Flowering Locus T expression during dormancy. In conclusion, DNA methylations and siRNAs appear to be involved in the silencing of PavMADS1 during cold accumulation and dormancy release in sweet cherry. © The Author 2017. Published by Oxford University Press. All rights reserved.Ítem Global Methylation Analysis Using MSAP Reveals Differences in Chilling-Associated DNA Methylation Changes during Dormancy Release in Contrasting Sweet Cherry Varieties(MDPI, 2022-10) Narváez, Gabriela; Muñoz Espinoza, Claudia; Soto, Esteban; Rothkegel, Karin; Bastías, Macarena; Gutiérrez, José; Bravo, Soraya; Hasbún, Rodrigo; Meneses, Claudio; Almeida, Andrea MiyasakaDormancy is an adaptive strategy developed by temperate perennial crops to protect overwinter tissues from unfavorable environmental conditions. Sweet cherry (Prunus avium L.), a member of the Rosaceae family, requires chilling to overcome dormancy. The time of harvest is directly correlated with chilling requirements in sweet cherries. Consequently, early and late season varieties have low and high chilling requirements, respectively. There is evidence that the expression of dormancy-related genes is regulated by DNA methylation. In this work, methylation-sensitive amplified polymorphism (MSAP) was applied to study genome-wide DNA methylation changes associated with dormancy in two low-chill varieties, ‘Royal Dawn’ and ‘Glen Red’, and one high-chill variety, ‘Kordia’. Our primary results suggest that the occurrence of progressive DNA demethylation is associated with chilling accumulation during dormancy in the three varieties, independent of their chilling requirements. Genes were identified with different methylation status changes, detected by MSAP, related to cell wall remodeling and energy metabolism. Several MSAP profiles among the varieties were observed, suggesting that fine epigenetic control is required to coordinate hormonal and environmental signals that induce dormancy and its release. © 2022 by the authors.