Examinando por Autor "Brownstein, Joel R."
Mostrando 1 - 5 de 5
Resultados por página
Opciones de ordenación
Ítem APOGEE chemical abundance patterns of the massive milky way satellites(IOP Publishing Ltd, 2021-12) Hasselquist, Sten; Hayes, Christian R; Lian, Jianhui; Weinberg, David H.; Zasowski, Gail; Horta, Danny; Beaton, Rachael; Feuillet, Diane K.; Garro, Elisa R.; Gallart, Carme; Smith, Verne V.; Holtzman, Jon A.; Minniti, Dante; Lacerna, Ivan; Shetrone, Matthew; Jönsson, Henrik; Cioni, Maria-Rosa L.; Fillingham, Sean P.; Cunha, Katia; O'Connell, Robert; Fernández-Trincado, José G.; Munoz, Ricardo R.; Schiavon, Ricardo; Almeida, Andres; Anguiano, Borja; Beers, Timothy C.; Bizyaev, Dmitry; Brownstein, Joel R.; Cohen, Roger E.; Frinchaboy, Peter; García-Hernández, D.A.; Geisler, Doug; Lane, Richard R.; Majewski, Steven R; Nidever, David L.; Nitschelm, Christian; Povick, Joshua; Price-Whelan, Adrian; Roman-Lopes, Alexandre; Rosado, Margarita; Sobeck, Jennifer; Stringfellow, Guy; Valenzuela, Octavio; Villanova, Sandro; Vincenzo, FiorenzoThe SDSS-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey has obtained high resolution spectra for thousands of red giant stars distributed among the massive satellite galaxies of the Milky Way (MW): the Large and Small Magellanic Clouds (LMC/SMC), the Sagittarius Dwarf Galaxy (Sgr), Fornax (Fnx), and the now fully disrupted Gaia Sausage/Enceladus (GSE) system. We present and analyze the APOGEE chemical abundance patterns of each galaxy to draw robust conclusions about their star formation histories, by quantifying the relative abundance trends of multiple elements (C, N, O, Mg, Al, Si, Ca, Fe, Ni, and Ce), as well as by fitting chemical evolution models to the [α/Fe]–[Fe/H] abundance plane for each galaxy. Results show that the chemical signatures of the starburst in the Magellanic Clouds (MCs) observed by Nidever et al. in the α-element abundances extend to C+N, Al, and Ni, with the major burst in the SMC occurring some 3–4 Gyr before the burst in the LMC. We find that Sgr and Fnx also exhibit chemical abundance patterns suggestive of secondary star formation epochs, but these events were weaker and earlier (∼5–7 Gyr ago) than those observed in the MCs. There is no chemical evidence of a second starburst in GSE, but this galaxy shows the strongest initial star formation as compared to the other four galaxies. All dwarf galaxies had greater relative contributions of AGB stars to their enrichment than the MW. Comparing and contrasting these chemical patterns highlight the importance of galaxy environment on its chemical evolution.Ítem The extended Baryon Oscillation Spectroscopic Survey: a cosmological forecast(MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 457 (3):2377-2390, 2016-04) Zhao, Gong-Bo; Wang, Yuting; Ross, Ashley J.; Shandera, Sarah; Percival, Will J.; Dawson, Kyle S.; Kneib, Jean-Paul; Myers, Adam D.; Brownstein, Joel R.; Comparat, Johan; Delubac, Timothee; Gao, Pengyuan; Hojjati, Alireza; Koyama, Kazuya; McBride, Cameron K.; Meza, Andres; Newman, Jeffrey A.; Palanque-Delabrouille, Nathalie; Pogosian, Levon; Prada, Francisco; Rossi, Graziano; Schneider, Donald P.; Seo, Hee-Jong; Tao, Charling; Wang, Dandan; Yeche, Christophe; Zhang, Hanyu; Zhang, Yuecheng; Zhou, Xu; Zhu, Fangzhou; Zou, HuWe present a science forecast for the extended Baryon Oscillation Spectroscopic Survey (eBOSS) survey. Focusing on discrete tracers, we forecast the expected accuracy of the baryonic acoustic oscillation (BAO), the redshift-space distortion (RSD) measurements, the fNL parameter quantifying the primordial non-Gaussianity, the dark energy and modified gravity parameters. We also use the line-of-sight clustering in the Lyman a forest to constrain the total neutrino mass. We find that eBOSS luminous red galaxies, emission line galaxies and clustering quasars can achieve a precision of 1, 2.2 and 1.6 per cent, respectively, for spherically averaged BAO distance measurements. Using the same samples, the constraint on fob is expected to be 2.5, 3.3 and 2.8 per cent, respectively. For primordial non-Gaussianity, eBOSS alone can reach an accuracy of a (f(NL)) similar to 10-15. eBOSS can at most improve the dark energy figure of merit by a factor of 3 for the Chevallier-Polarski-Linder parametrization, and can well constrain three eigenmodes for the general equation-of-state parameter. eBOSS can also significantly improve constraints on modified gravity parameters by providing the RSD information, which is highly complementary to constraints obtained from weak lensing measurements. A principal component analysis shows that eBOSS can measure the eigenmodes of the effective Newton's constant to 2 per cent precision; this is a factor of 10 improvement over that achievable without eBOSS. Finally, we derive the eBOSS constraint (combined with Planck, Dark Energy Survey and BOSS) on the total neutrino mass, sigma (Em(upsilon)) = 0.03 eV (68 per cent CL), which in principle makes it possible to distinguish between the two scenarios of neutrino mass hierarchies.Ítem The Open Cluster Chemical Abundances and Mapping Survey. IV. Abundances for 128 Open Clusters Using SDSS/APOGEE DR16(Institute of Physics Publishing, 2020-05) Donor, John; Frinchaboy, Peter M.; Cunha, Katia; O'connell, Julia E.; Prieto, Carlos Allende; Almeida, Andrés; Anders, Friedrich; Beaton, Rachael; Bizyaev, Dmitry; Brownstein, Joel R.; Carrera, Ricardo; Chiappini, Cristina; Cohen, Roger; García-Hernández D. A.; Geisler, Doug; Hasselquist, Sten; Jönsson, Henrik; Lane, Richard R.; Majewski, Steven R.; Minniti, Dante; Bidin, Christian Moni; Pan, Kaike; Roman-Lopes, Alexandre; Sobeck, Jennifer S.; Zasowski, GailThe Open Cluster Chemical Abundances and Mapping (OCCAM) survey aims to constrain key Galactic dynamical and chemical evolution parameters by the construction of a large, comprehensive, uniform, infrared-based spectroscopic data set of hundreds of open clusters. This fourth contribution from the OCCAM survey presents analysis using Sloan Digital Sky Survey/APOGEE DR16 of a sample of 128 open clusters, 71 of which we designate to be "high quality" based on the appearance of their color-magnitude diagram. We find the APOGEE DR16 derived [Fe/H] abundances to be in good agreement with previous high-resolution spectroscopic open cluster abundance studies. Using the high-quality sample, we measure Galactic abundance gradients in 16 elements, and find evolution of some of the [X/Fe] gradients as a function of age. We find an overall Galactic [Fe/H] versus R GC gradient of -0.068 ± 0.001 dex kpc-1 over the range of 6 < R GC < 13.9 kpc; however, we note that this result is sensitive to the distance catalog used, varying as much as 15%. We formally derive the location of a break in the [Fe/H] abundance gradient as a free parameter in the gradient fit for the first time. We also measure significant Galactic gradients in O, Mg, S, Ca, Mn, Cr, Cu, Na, Al, and K, some of which are measured for the first time. Our large sample allows us to examine four well-populated age bins in order to explore the time evolution of gradients for a large number of elements and comment on possible implications for Galactic chemical evolution and radial migration.Ítem The SDSS-IV extended baryon oscillation spectroscopic survey: Overview and early data(Institute of Physics Publishing, 2016-02) Dawson, Kyle S.; Kneib, Jean-Paul; Percival, Will J.; Alam, Shadab; Albareti, Franco D.; Anderson, Scott F.; Armengaud, Eric; Aubourg, Éric; Bailey, Stephen; Bautista, Julian E.; Berlind, Andreas A.; Bershady, Matthew A.; Beutler, Florian; Bizyaev, Dmitry; Blanton, Michael R.; Blomqvist, Michael; Bolton, Adam S.; Bovy, Jo; Brandt, W.N.; Brinkmann, Jon; Brownstein, Joel R.; Burtin, Etienne; Busca, N.G.; Cai, Zheng; Chuang, Chia-Hsun; Clerc, Nicolas; Comparat, Johan; Cope, Frances; Croft, Rupert A. C.; Cruz-Gonzalez, Irene; Da Costa, Luiz N; Cousinou, Marie-Claude; Darling, Jeremy; De La MacOrra, Axel; De La Torre, Sylvain; Delubac, Timothée; Du Mas Des Bourboux, Hélion; Dwelly, Tom; Ealet, Anne; Eisenstein, Daniel J.; Eracleous, Michael; Escoffier, S.; Fan, Xiaohui; Finoguenov, Alexis; Font-Ribera, Andreu; Frinchaboy, Peter; Gaulme, Patrick; Georgakakis, Antonis; Green, Paul; Guo, Hong; Guy, Julien; Ho, Shirley; Holder, Diana; Huehnerhoff, Joe; Hutchinson, Timothy; Jing, Yipeng; Jullo, Eric; Kamble, Vikrant; Kinemuchi, Karen; Kirkby, David; Kitaura, Francisco-Shu; Klaene, Mark A.; Laher, Russ R.; Lang, Dustin; Laurent, Pierre; Goff, Jean-Marc Le; Li, Cheng; Liang, Yu; Lima, Marcos; Lin, Qiufan; Lin, Weipeng; Lin, Yen-Ting; Long, Daniel C.; Lundgren, Britt; MacDonald, Nicholas; Maia, Marcio Antonio Geimba; Malanushenko, Elena; Malanushenko, Viktor; Mariappan, Vivek; McBride, Cameron K.; McGreer, Ian D.; Ménard, Brice; Merloni, Andrea; Meza, Andres; Montero-Dorta, Antonio D.; Muna, Demitri; Myers, Adam D.; Nandra, Kirpal; Naugle, Tracy; Newman, Jeffrey A.; Noterdaeme, Pasquier; Nugent, Peter; Ogando, Ricardo; Olmstead, Matthew D.; Oravetz, Audrey; Oravetz, Daniel J.; Padmanabhan, Nikhil; Palanque-Delabrouille, Nathalie; Pan, Kaike; Parejko, John K.; Pâris, Isabelle; Peacock, John A.; Petitjean, Patrick; Pieri, Matthew M.; Pisani, Alice; Prada, Francisco; Prakash, Abhishek; Raichoor, Anand; Reid, Beth; Rich, James; Ridl, Jethro; Rodriguez-Torres, Sergio; Rosell, Aurelio Carnero; Ross, Ashley J.; Rossi, Graziano; Ruan, John; Salvato, Mara; Sayres, Conor; Schneider, Donald P.; Schlegel, David J.; Seljak, Uros; Seo, Hee-Jong; Sesar, Branimir; Shandera, Sarah; Shu, Yiping; Slosar, Anže; Sobreira, Flavia; Streblyanska, Alina; Suzuki, Nao; Taylor, Donna; Tao, Charling; Tinker, Jeremy L.; Tojeiro, Rita; Vargas-Magaña, Mariana; Wang, Yuting; Weaver, Benjamin A.; Weinberg, David H.; White, Martin; Wood-Vasey, W.M.; Yeche, Christophe; Zhai, Zhongxu; Zhao, Cheng; Zhao, Gong-Bo; Zheng, Zheng; Zhu, Guangtun Ben; Zou, HuIn a six-year program started in 2014 July, the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) will conduct novel cosmological observations using the BOSS spectrograph at Apache Point Observatory. These observations will be conducted simultaneously with the Time Domain Spectroscopic Survey (TDSS) designed for variability studies and the Spectroscopic Identification of eROSITA Sources (SPIDERS) program designed for studies of X-ray sources. In particular, eBOSS will measure with percent-level precision the distance-redshift relation with baryon acoustic oscillations (BAO) in the clustering of matter. eBOSS will use four different tracers of the underlying matter density field to vastly expand the volume covered by BOSS and map the large-scale structures over the relatively unconstrained redshift range 0.6 < z < 2.2. Using more than 250,000 new, spectroscopically confirmed luminous red galaxies at a median redshift z = 0.72, we project that eBOSS will yield measurements of the angular diameter distance dA(z) to an accuracy of 1.2% and measurements of H(z) to 2.1% when combined with the z > 0.6 sample of BOSS galaxies. With ∼195,000 new emission line galaxy redshifts, we expect BAO measurements of dA(z) to an accuracy of 3.1% and H(z) to 4.7% at an effective redshift of z = 0.87. A sample of more than 500,000 spectroscopically confirmed quasars will provide the first BAO distance measurements over the redshift range 0.9 < z < 2.2, with expected precision of 2.8% and 4.2% on dA(z) and H(z), respectively. Finally, with 60,000 new quasars and re-observation of 60,000 BOSS quasars, we will obtain new Lyα forest measurements at redshifts z > 2.1; these new data will enhance the precision of dA(z) and H(z) at z > 2.1 by a factor of 1.44 relative to BOSS. Furthermore, eBOSS will provide improved tests of General Relativity on cosmological scales through redshift-space distortion measurements, improved tests for non Gaussianity in the primordial density field, and new constraints on the summed mass of all neutrino species. Here, we provide an overview of the cosmological goals, spectroscopic target sample, demonstration of spectral quality from early data, and projected cosmological constraints from eBOSS.Ítem The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar, and APOGEE-2 Data(American Astronomical Society, 2022-04-01) Abdurro'Uf; Accetta, Katherine; Aerts, Conny; Silva Aguirre, Víctor; Ahumada, Romina; Ajgaonkar, Nikhil; Filiz Ak, N.; Alam, Shadab; Allende Prieto, Carlos; Almeida, Andrés; Anders, Friedrich; Anderson, Scott F.; Andrews, Brett H.; Anguiano, Borja; Aquino-Ortíz, Erik; Aragón-Salamanca, Alfonso; Argudo-Fernández, Maria; Ata, Metin; Aubert, Marie; Avila-Reese, Vladimir; Badenes, Carles; Barbá, Rodolfo H.; Barger, Kat; Barrera-Ballesteros, Jorge K.; Beaton, Rachael L.; Beers, Timothy C.; Belfiore, Francesco; Bender, Chad F.; Bernardi, Mariangela; Bershady, Matthew A.; Beutler, Florian; Bidin, Christian Moni; Bird, Jonathan C.; Bizyaev, Dmitry; Blanc, Guillermo A.; Blanton, Michael R.; Boardman, Nicholas Fraser; Bolton, Adam S.; Boquien, Médéric; Borissova, Jura; Bovy, Jo; Brandt, W.N.; Brown, Jordan; Brownstein, Joel R.; Brusa, Marcella; Buchner, Johannes; Bundy, Kevin; Burchett, Joseph N.; Bureau, Martin; Burgasser, Adam; Cabang, Tuesday K.; Campbell, Stephanie; Cappellari, Michele; Carlberg, Joleen K.; Wanderley, Fábio Carneiro; Carrera, Ricardo; Cash, Jennifer; Chen, Yan-Ping; Chen, Wei-Huai; Cherinka, BrianThis paper documents the seventeenth data release (DR17) from the Sloan Digital Sky Surveys; the fifth and final release from the fourth phase (SDSS-IV). DR17 contains the complete release of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which reached its goal of surveying over 10,000 nearby galaxies. The complete release of the MaNGA Stellar Library accompanies this data, providing observations of almost 30,000 stars through the MaNGA instrument during bright time. DR17 also contains the complete release of the Apache Point Observatory Galactic Evolution Experiment 2 survey that publicly releases infrared spectra of over 650,000 stars. The main sample from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), as well as the subsurvey Time Domain Spectroscopic Survey data were fully released in DR16. New single-fiber optical spectroscopy released in DR17 is from the SPectroscipic IDentification of ERosita Survey subsurvey and the eBOSS-RM program. Along with the primary data sets, DR17 includes 25 new or updated value-added catalogs. This paper concludes the release of SDSS-IV survey data. SDSS continues into its fifth phase with observations already underway for the Milky Way Mapper, Local Volume Mapper, and Black Hole Mapper surveys. © 2022. The Author(s). Published by the American Astronomical Society.