Examinando por Autor "Bulla, M."
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Ítem A kilonova as the electromagnetic counterpart to a gravitational-wave source(Nature Publishing Group, 2017-11) Smartt, S.J.; Chen, T.-W.; Jerkstrand, A.; Coughlin, M.; Kankare, E.; Sim, S.A.; Fraser, M.; Inserra, C.; Maguire, K.; Chambers, K.C.; Huber, M.E.; Krühler, T.; Leloudas, G.; Magee, M.; Shingles, L.J.; Smith, K.W.; Young, D.R.; Tonry, J.; Kotak, R.; Gal-Yam, A.; Lyman, J.D.; Homan, D.S.; Agliozzo, C.; Anderson, J.P.; Angus, C.R.; Ashall, C.; Barbarino, C.; Bauer, F.E.; Berton, M.; Botticella, M.T.; Bulla, M.; Bulger, J.; Cannizzaro, G.; Cano, Z.; Cartier, R.; Cikota, A.; Clark, P.; De Cia, A.; Della Valle, M.; Denneau, L.; Dennefeld, M.; Dessart, L.; Dimitriadis, G.; Elias-Rosa, N.; Firth, R.E.; Flewelling, H.; Flörs, A.; Franckowiak, A.; Frohmaier, C.; Galbany, L.; González-Gaitán, S.; Greiner, J.; Gromadzki, M.; Nicuesa Guelbenzu, A.; Gutiérrez, C.P.; Hamanowicz, A.; Hanlon, L.; Harmanen, J.; Heintz, K.E.; Heinze, A.; Hernandez, M.-S.; Hodgkin, S.T.; Hook, I.M.; Izzo, L.; James, P.A.; Jonker, P.G.; Kerzendorf, W.E.; Klose, S.; Kostrzewa-Rutkowska, Z.; Kowalski, M.; Kromer, M.; Kuncarayakti, H.; Lawrence, A.; Lowe, T.B.; Magnier, E.A.; Manulis, I.; Martin-Carrillo, A.; Mattila, S.; McBrien, O.; Müller, A.; Nordin, J.; O'Neill, D.; Onori, F.; Palmerio, J.T.; Pastorello, A.; Patat, F.; Pignata, G.; Pumo, M.L.; Prentice, S.J.; Rau, A.; Razza, A.; Rest, A.; Reynolds, T.; Roy, R.; Ruiter, A.J.; Rybicki, K.A.; Salmon, L.; Schady, P.; Schultz, A.S.B.; Schweyer, T.; Seitenzahl, I.R.; Smith, M.; Sollerman, J.; Stalder, B.; Stubbs, C.W.; Sullivan, M.; Szegedi, H.; Taddia, F.; Taubenberger, S.; Terreran, G.; Van Soelen, B.; Vos, J.; Wainscoat, R.J.; Waters, C.; Weiland, H.; Willman, M.; Wiseman, P.; Wright, D.E.; Walton, N.A.; Wyrzykowski, L.; Yaron, O.Gravitational waves were discovered with the detection of binary black-hole mergers1 and they should also be detectable from lowermass neutron-star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal. This signal is luminous at optical and infrared wavelengths and is called a kilonova2-5. The gravitational-wave source GW170817 arose from a binary neutron-star merger in the nearby Universe with a relatively well confined sky position and distance estimate6. Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817 and with a weak, short γ-ray burst7,8. The transient has physical parameters that broadly match the theoretical predictions of blue kilonovae from neutron-star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 ± 0.01 solar masses, with an opacity of less than 0.5 square centimetres per gram, at a velocity of 0.2 ± 0.1 times light speed. The power source is constrained to have a power-law slope of -1.2 ± 0.3, consistent with radioactive powering from r-process nuclides. (The r-process is a series of neutron capture reactions that synthesise many of the elements heavier than iron.) We identify line features in the spectra that are consistent with light r-process elements (atomic masses of 90-140). As it fades, the transient rapidly becomes red, and a higher-opacity, lanthanide-rich ejecta component may contribute to the emission. This indicates that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process elements. © 2017 Macmillan Publishers Limited, part of Springer Nature.Ítem PESSTO: Survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects(EDP Sciences, 2015-07) Smartt, S.J.; Valenti, S.; Fraser, M.; Inserra, C.; Young, D.R.; Sullivan, M.; Pastorello, A.; Benetti, S.; Gal-Yam, A.; Knapic, C.; Molinaro, M.; Smareglia, R.; Smith, K.W.; Taubenberger, S.; Yaron, O.; Anderson, J.P.; Ashall, C.; Balland, C.; Baltay, C.; Barbarino, C.; Bauer, F.E.; Baumont, S.; Bersier, D.; Blagorodnova, N.; Bongard, S.; Botticella, M.T.; Bufano, F.; Bulla, M.; Cappellaro, E.; Campbell, H.; Cellier-Holzem, F.; Chen, T.-W.; Childress, M.J.; Clocchiatti, A.; Contreras, C.; Dall'Ora, M.; Danziger, J.; De Jaeger, T.; De Cia, A.; Della Valle, M.; Dennefeld, M.; Elias-Rosa, N.; Elman, N.; Feindt, U.; Fleury, M.; Gall, E.; Gonzalez-Gaitan, S.; Galbany, L.; Morales Garoffolo, A.; Greggio, L.; Guillou, L.L.; Hachinger, S.; Hadjiyska, E.; Hage, P.E.; Hillebrandt, W.; Hodgkin, S.; Hsiao, E.Y.; James, P.A.; Jerkstrand, A.; Kangas, T.; Kankare, E.; Kotak, R.; Kromer, M.; Kuncarayakti, H.; Leloudas, G.; Lundqvist, P.; Lyman, J.D.; Hook, I.M.; Maguire, K.; Manulis, I.; Margheim, S.J.; Mattila, S.; Maund, J.R.; Mazzali, P.A.; McCrum, M.; McKinnon, R.; Moreno-Raya, M.E.; Nicholl, M.; Nugent, P.; Pain, R.; Pignata, G.; Phillips, M.M.; Polshaw, J.; Pumo, M.; Rabinowitz, D.; Reilly, E.; Romero-Cañizales, C.; Scalzo, R.; Schmidt, B.; Schulze, S.; Sim, S.; Sollerman, J.; Taddia, F.; Tartaglia, L.; Terreran, G.; Tomasella, L.; Turatto, M.; Walker, E.; Walton, N.A.; Wyrzykowski, L.; Yuan, F.; Zampieri, L.Context. The Public European Southern Observatory Spectroscopic Survey of Transient Objects (PESSTO) began as a public spectroscopic survey in April 2012. PESSTO classifies transients from publicly available sources and wide-field surveys, and selects science targets for detailed spectroscopic and photometric follow-up. PESSTO runs for nine months of the year, January - April and August - December inclusive, and typically has allocations of 10 nights per month. Aims. We describe the data reduction strategy and data products that are publicly available through the ESO archive as the Spectroscopic Survey data release 1 (SSDR1). Methods. PESSTO uses the New Technology Telescope with the instruments EFOSC2 and SOFI to provide optical and NIR spectroscopy and imaging. We target supernovae and optical transients brighter than 20.5m for classification. Science targets are selected for follow-up based on the PESSTO science goal of extending knowledge of the extremes of the supernova population. We use standard EFOSC2 set-ups providing spectra with resolutions of 13-18 Å between 3345-9995 Å. A subset of the brighter science targets are selected for SOFI spectroscopy with the blue and red grisms (0.935-2.53 μm and resolutions 23-33 Å) and imaging with broadband JHKs filters. Results. This first data release (SSDR1) contains flux calibrated spectra from the first year (April 2012-2013). A total of 221 confirmed supernovae were classified, and we released calibrated optical spectra and classifications publicly within 24 h of the data being taken (via WISeREP). The data in SSDR1 replace those released spectra. They have more reliable and quantifiable flux calibrations, correction for telluric absorption, and are made available in standard ESO Phase 3 formats. We estimate the absolute accuracy of the flux calibrations for EFOSC2 across the whole survey in SSDR1 to be typically ∼15%, although a number of spectra will have less reliable absolute flux calibration because of weather and slit losses. Acquisition images for each spectrum are available which, in principle, can allow the user to refine the absolute flux calibration. The standard NIR reduction process does not produce high accuracy absolute spectrophotometry but synthetic photometry with accompanying JHKs imaging can improve this. Whenever possible, reduced SOFI images are provided to allow this. Conclusions. Future data releases will focus on improving the automated flux calibration of the data products. The rapid turnaround between discovery and classification and access to reliable pipeline processed data products has allowed early science papers in the first few months of the survey. © ESO, 2015.Ítem Spectropolarimetry of Type II supernovae: II. Intrinsic supernova polarization and its relation to photometric and spectroscopic properties(EDP Sciences, 2024-01) Nagao,T.; Patat, F.; Cikota, A.; Baade, D.; Mattila, S.; Kotak, R.; Kuncarayakti, H.; Bulla, M.; Ayala, B.The explosion processes of supernovae (SNe) are imprinted in their explosion geometries. The recent discovery of several highly aspherical core-collapse SNe is significant, and studying these is regarded as being crucial in order to understand the underlying explosion mechanism. Here, we study the intrinsic polarization of 15 hydrogen-rich core-collapse SNe and explore the relation between polarization and the photometric and spectroscopic properties of these objects. Our sample shows diverse properties of the continuum polarization. Most SNe show a low degree of polarization at early phases but a sudden rise to ∼1% at certain points during the photospheric phase followed by a slow decline during the tail phase, with a constant polarization angle. The variation in the timing of peak polarization values implies diversity in the explosion geometry: some SNe have aspherical structures only in their helium cores, while in other SNe such structures reach out to a significant part of the outer hydrogen envelope with a common axis from the helium core to the hydrogen envelope. Other SNe show high polarization from early phases and a change in polarization angle around the middle of the photospheric phase. This implies that the ejecta are significantly aspherical out to the outermost layer and have multi-directional aspherical structures. Exceptionally, the Type IIL SN 2017ahn shows low polarization at both the photospheric and tail phases. Our results show that the timing of the polarization rise in Type IIP SNe is likely correlated with their brightness, velocity, and the amount of radioactive Ni produced: brighter SNe with faster ejecta velocity and a larger 56Ni mass have more extended aspherical explosion geometries. In particular, there is a clear correlation between the timing of the polarization rise and the explosion energy; that is, the explosion asphericity is proportional to the explosion energy. This implies that the development of a global aspherical structure, such as a jet, might be the key for the realisation of an energetic SN in the mechanism of SN explosions. © 2024 The Authors.