Examinando por Autor "Castillo, Rodrigo"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Antinociceptive interaction of Tramadol with Gabapentin in experimental mononeuropathic pain(Blackwell Publishing Ltd, 2016-08) Miranda, Hugo F.; Noriega, Viviana; Prieto, Juan Carlos; Zanetta, Pilar; Castillo, Rodrigo; Aranda, Nicolás; Sierralta, FernandoNeuropathic pain is the result of injury to the nervous system, and different animal models have been established to meet the manifestations of neuropathy. The pharmacotherapy for neuropathic pain includes gabapentin and tramadol, but these are only partially effective when given alone. The aim of this study was to assess the antinociceptive interaction between both drugs using the isobolographic analysis and changes of the IL-1β concentration in a mouse model of neuropathic pain (partial sciatic nerve ligation or PSNL). The i.p. administration of gabapentin (5–100 mg/kg) or tramadol (12.5–100 mg/kg) displayed a dose-dependent antinociception in the hot plate assay of PSNL mice, and effects induced by gabapentin with tramadol were synergistic. Administration of gabapentin or tramadol reversed significantly the increase in the concentration of IL-1β induced by PSNL after either 7 or 14 days and their combination was significantly more potent in reversing the elevated concentration of IL-1β. The synergism obtained by the co-administration of gabapentin and tramadol is proposed to result from action on different mechanisms in pain pathways. Gabapentin or tramadol or their combination modulates the expression of pro-inflammatory cytokine, IL-1β, in a model of mice PSNL which could be due to an inhibition of glial function.Ítem Physiological Performance and Biosorption Capacity of Exiguobacterium sp. SH31 Isolated from Poly-Extreme Salar de Huasco in the Chilean Altiplano: A Study on Rare-Earth Element Tolerance(Multidisciplinary Digital Publishing Institute (MDPI), 2024-01) Serrano, Genesis; Fortt, Jonathan; Castro-Severyn, Juan; Castillo, Rodrigo; Saavedra, Claudia; Krüger, Gabriel; Núñez, Claudia; Remonsellez, Francisco; Gallardo, KaremRare-earth elements (REEs) are crucial metals with limited global availability due to their indispensable role in various high-tech industries. As the demand for rare-earth elements continues to rise, there is a pressing need to develop sustainable methods for their recovery from secondary sources. Focusing on Exiguobacterium sp. SH31, this research investigates the impact of La, Eu, Gd, and Sm on its physiological performance and biosorption capacity. Tolerance was assessed at pHpzc from 7 to 8 with up to 1 mM rare-earth element concentrations. This study visualized the production of extracellular polymeric substances using Congo red assays and quantified them with ultraviolet–visible spectroscopy. Attenuated total reflectance Fourier transform infrared spectroscopy characterized the functional groups involved in metal interactions. The SH31 strain displayed significant rare-earth element tolerance, confirmed extracellular polymeric substance (EPS) production under all conditions, and increased production in the presence of Sm. Spectroscopy analysis revealed changes in wavelengths associated with OH and R-COO-, suggesting rare-earth element interactions. SH31 demonstrated efficient metal adsorption, with removal rates exceeding 75% at pHpzc 7 and over 95% at pHpzc 7.5 and 8. The calculated Qmax value for rare-earth element biosorption was approximately 23 mg/g, and Langmuir isotherm models effectively described metal sorption equilibria. Genomic exploration identified genes related to extracellular polymeric substance formation, providing insights into underlying mechanisms. This study presents the first evidence of efficient La, Eu, Gd, and Sm adsorption by SH31, emphasizing its potential significance in rare-earth element recovery. © 2023 by the authors.