Examinando por Autor "Castro, A."
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Measurement of the muon flux at the SND@LHC experiment(Institute for Ionics, 2024-01) Albanese, R.; Alexandrov, A.; Alicante, F.; Anokhina, A.; Asada, T.; Battilana, C.; Bay, A.; Betancourt, C.; Bick, D.; Biswas, R.; Castro, A. Blanco; Boccia, V.; Bogomilov, M.; Bonacorsi, D.; Bonivento, W.M.; Bordalo, P.; Boyarsky, A.; Buontempo, S.; Campanelli, M.; Camporesi, T.; Canale, V.; Castro, A.; Centanni, D.; Cerutti, F.; Chernyavskiy, M.; Choi, K.-Y.; Cholak, S.; Cindolo, F.; Climescu, M.; Conaboy, A.P.; Dallavalle, G.M.; Davino, D.; de Bryas, P.T.; De Lellis, G.; De Magistris, M.; De Roeck, A.; De Rújula, A.; De Serio, M.; De Simone, D.; Crescenzo, A. Di; Donà, R.; Durhan, O.; Fabbri, F.; Fedotovs, F.; Ferrillo, M.; Ferro-Luzzi, M.; Fini, R.A.; Fiorillo, A.; Fresa, R.; Funk, W.; Walls, F. M. Garay; Golovatiuk, A.; Golutvin, A.; Graverini, E.; Guler, A.M.; Guliaeva, V.; Haefeli, G.J.; Hagner, C.; Herrera, J. C. Helo; van Herwijnen, E.; Iengo, P.; Ilieva, S.; Infantino, A.; Iuliano, A.; Jacobsson, R.; Kamiscioglu, C.; Kauniskangas, A.M.; Khalikov, E.; Kim, S.H.; Kim, Y.G.; Klioutchnikov, G.; Komatsu, M.; Konovalova, N.; Kuleshov, S.; Lacker, H.M.; Lantwin, O.; Manghi, F. Lasagni; Lauria, A.; Lee, K.Y.; Lee, K.S.; Meo, S. Lo; Loschiavo, V.P.; Marcellini, S.; Margiotta, A.; Mascellani, A.; Miano, A.; Mikulenko, A.; Montesi, M.C.; Navarria, F.L.; Ogawa, S.; Okateva, N.; Ovchynnikov, M.; Paggi, G.; Park, B.D.; Pastore, A.; Perrotta, A.; Podgrudkov, D.; Polukhina, N.; Prota, A.; Quercia, A.; Ramos, S.; Reghunath, A.; Roganova, T.; Ronchetti, F.; Rovelli, T.; Ruchayskiy, O.; Ruf, T.; Gilarte, M. Sabate; Sadykov, Z.; Samoilov, M.; Scalera, V.; Schmidt-Parzefall, W.; Schneider, O.; Sekhniaidze, G.; Serra, N.; Shaposhnikov, M.; Shevchenko, V.; Shchedrina, T.; Shchutska, L.; Shibuya, H.; Simone, S.; Siroli, G.P.; Sirri, G.; Soares, G.; Sohn, J.Y.; Sandoval, O. J. Soto; Spurio, M.; Starkov, N.; Timiryasov, I.; Tioukov, V.; Tramontano, F.; Trippl, C.; Ursov, E.; Ustyuzhanin, A.; Vankova-Kirilova, G.; Verguilov, V.; Leonardo, N. Viegas Guerreiro; Vilela, C.; Visone, C.; Wanke, R.; Yaman E.; Yazici, C.; Yoon, C.S.; Zaffaroni, E.; Saa, J. ZamoraThe Scattering and Neutrino Detector at the LHC (SND@LHC) started taking data at the beginning of Run 3 of the LHC. The experiment is designed to perform measurements with neutrinos produced in proton-proton collisions at the LHC in an energy range between 100 GeV and 1 TeV. It covers a previously unexplored pseudo-rapidity range of 7.2 < η< 8.4 . The detector is located 480 m downstream of the ATLAS interaction point in the TI18 tunnel. It comprises a veto system, a target consisting of tungsten plates interleaved with nuclear emulsion and scintillating fiber (SciFi) trackers, followed by a muon detector (UpStream, US and DownStream, DS). In this article we report the measurement of the muon flux in three subdetectors: the emulsion, the SciFi trackers and the DownStream Muon detector. The muon flux per integrated luminosity through an 18 × 18 cm 2 area in the emulsion is: 1.5±0.1(stat)×104fb/cm2. The muon flux per integrated luminosity through a 31 × 31 cm 2 area in the centre of the SciFi is: 2.06±0.01(stat)±0.12(sys)×104fb/cm2 The muon flux per integrated luminosity through a 52 × 52 cm 2 area in the centre of the downstream muon system is: 2.35±0.01(stat)±0.10(sys)×104fb/cm2 The total relative uncertainty of the measurements by the electronic detectors is 6 % for the SciFi and 4 % for the DS measurement. The Monte Carlo simulation prediction of these fluxes is 20–25 % lower than the measured values. © 2024, The Author(s).Ítem Specialized Proresolving Lipid Mediators: A Potential Therapeutic Target for Atherosclerosis(MDPI, 2022-03) Salazar, J.; Pirela, D.; Nava, M.; Castro, A.; Angarita, L.; Parra, H.; Durán-Agüero, S.; Rojas-Gómez, D.; Galbán, N.; Añez, R.; Chacín, M.; Diaz, A.; Villasmil, N.; De Sanctis, J.; Bermúdez, V.Cardiovascular disease (CVD) is a global public health issue due to its high morbidity, mortality, and economic impact. The implementation of innovative therapeutic alternatives for CVD is urgently required. Specialized proresolving lipid mediators (SPMs) are bioactive compounds derived from ω-3 and ω-6 fatty acids, integrated into four families: Lipoxins, Resolvins, Protectins, and Maresins. SPMs have generated interest in recent years due to their ability to promote the resolution of inflammation associated with the pathogeneses of numerous illnesses, particularly CVD. Several preclinical studies in animal models have evidenced their ability to decrease the progression of atherosclerosis, intimal hyperplasia, and reperfusion injury via diverse mechanisms. Large-scale clinical trials are required to determine the effects of SPMs in humans. This review integrates the currently available knowledge of the therapeutic impact of SPMs in CVD from preclinical and clinical studies, along with the implicated molecular pathways. In vitro results have been promising, and as such, SPMs could soon represent a new therapeutic alternative for CVD.