Examinando por Autor "Castro Severyn, Juan"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Arsenic Response of Three Altiplanic Exiguobacterium Strains With Different Tolerance Levels Against the Metalloid Species: A Proteomics Study(Frontiers Media S.A., 2019-09) Castro Severyn, Juan; Pardo Esté, Coral; Sulbaran, Yoelvis; Cabezas, Carolina; Gariazzo, Valentina; Briones, Alan; Morales, Naiyulin; Séveno, Martial; Decourcelle, Mathilde; Salvetat, Nicolas; Remonsellez, Francisco; Castro Nallar, Eduardo; Molina, Franck; Molina, Laurence; Saavedra, Claudia P.Exiguobacterium is a polyextremophile bacterial genus with a physiology that allows it to develop in different adverse environments. The Salar de Huasco is one of these environments due to its altitude, atmospheric pressure, solar radiation, temperature variations, pH, salinity, and the presence of toxic compounds such as arsenic. However, the physiological and/or molecular mechanisms that enable them to prosper in these environments have not yet been described. Our research group has isolated several strains of Exiguobacterium genus from different sites of Salar de Huasco, which show different resistance levels to As(III) and As(V). In this work, we compare the protein expression patterns of the three strains in response to arsenic by a proteomic approach; strains were grown in absence of the metalloid and in presence of As(III) and As(V) sublethal concentrations and the protein separation was carried out in 2D electrophoresis gels (2D-GE). In total, 999 spots were detected, between 77 and 173 of which showed significant changes for As(III) among the three strains, and between 90 and 143 for As(V), respectively, compared to the corresponding control condition. Twenty-seven of those were identified by mass spectrometry (MS). Among these identified proteins, the ArsA [ATPase from the As(III) efflux pump] was found to be up-regulated in response to both arsenic conditions in the three strains, as well as the Co-enzyme A disulfide reductase (Cdr) in the two more resistant strains. Interestingly, in this genus the gene that codifies for Cdr is found within the genic context of the ars operon. We suggest that this protein could be restoring antioxidants molecules, necessary for the As(V) reduction. Additionally, among the proteins that change their expression against As, we found several with functions relevant to stress response, e.g., Hpf, LuxS, GLpX, GlnE, and Fur. This study allowed us to shed light into the physiology necessary for these bacteria to be able to tolerate the toxicity and stress generated by the presence of arsenic in their niche. © Copyright © 2019 Castro-Severyn, Pardo-Esté, Sulbaran, Cabezas, Gariazzo, Briones, Morales, Séveno, Decourcelle, Salvetat, Remonsellez, Castro-Nallar, Molina, Molina and Saavedra.Ítem Genetic characterization of salmonella infantis with multiple drug resistance profiles isolated from a poultry-farm in chile(MDPI, 2021-11) Pardo Esté, Coral; Lorca, Diego; Castro Severyn, Juan; Krüger, Gabriel; Alvarez Thon, Luis; Zepeda, Phillippi; Sulbaran Bracho, Yoelvis; Hidalgo, Alejandro; Tello, Mario; Molina, Franck; Molina, Laurence; Remonsellez, Francisco; Castro Nallar, Eduardo; Saavedra, ClaudiaSalmonella comprises over 2500 serotypes and foodborne contamination associated with this pathogen remains an important health concern worldwide. During the last decade, a shift in serotype prevalence has occurred as traditionally less prevalent serotypes are increasing in frequency of infections, especially those related to poultry meat contamination. S. Infantis is one of the major emerging serotypes, and these strains commonly display antimicrobial resistance and can persist despite cleaning protocols. Thus, this work aimed to isolate S. Infantis strains from a poultry meat farm in Santiago, Chile and to characterize genetic variations present in them. We determined their genomic and phenotypic profiles at different points along the production line. The results indicate that the strains encompass 853 polymorphic sites (core-SNPs) with isolates differing from one another by 0–347 core SNPs, suggesting variation among them; however, we found discrete correlations with the source of the sample in the production line. Furthermore, the pan-genome was composed of 4854 total gene clusters of which 2618 (53.9%) corresponds to the core-genome and only 181 (3.7%) are unique genes (those present in one particular strain). This preliminary analysis will enrich the surveillance of Salmonella, yet further studies are required to assess their evolution and phylogeny. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.