Logotipo del repositorio
  • Español
  • English
  • Iniciar sesión
    Ayuda

    Instrucciones:

    El Repositorio Institucional Académico (RIA) de la Universidad Andrés Bello, es un recurso de acceso abierto. No obstante, y de acuerdo con la ley chilena vigente sobre propiedad intelectual, mantiene en acceso restringido diversos documentos, los cuales sólo pueden ser consultados por la comunidad universitaria registrada. Para poder acceder a éstos, verificar el tipo de usuario y método de acceso, siguiendo las instrucciones que se detallan a continuación:

    • Si eres investigador, docente o funcionario con correo @unab.cl, ingresa utilizando tu usuario de computador o intranet (nombre de usuario sin incluir @unab.cl) y clave.
    • Si eres alumno, profesor adjunto o exalumno con correo @uandresbello.edu, debes registrarte primero, pinchando donde dice Nuevo usuario. Una vez registrado y obtenida el alta, ingresa con el correo electrónico institucional y la clave elegida. El registro se debe realizar utilizando la cuenta de correo institucional, no serán válidas cuentas gmail, hotmail o cualquier otro proveedor.
    • Si eres usuario externo, contactar directamente a repositorio@unab.cl
    o
    ¿Nuevo Usuario? Pulse aquí para registrarse¿Has olvidado tu contraseña?
  • Comunidades
  • Todo RIA
  • Contacto
  • Procedimientos de publicaciónDerecho de autorPolíticas del Repositorio
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Cevallos, Benjamin"

Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    Ítem
    Hard X-Ray Emission Detection Using Deep Learning Analysis of the Radiated UHF Electromagnetic Signal from a Plasma Focus Discharge
    (Institute of Electrical and Electronics Engineers Inc., 2019) Avaria, Gonzalo; Ardila-Rey, Jorge; Davis, Sergio; Orellana, Luis; Cevallos, Benjamin; Pavez, Cristian; Soto, Leopoldo
    A method to determine the presence of hard X-ray emission processes from a dense plasma focus (205 J, 22 kV, 6.5 mbar H2) using Ultra High Frequency (UHF) measurements and deep learning techniques is presented. Simultaneously, the electromagnetic UHF radiation emitted from the plasma focus was measured with a Vivaldi UHF antenna, while the hard X-ray emission was measured with a scintillator-photomultiplier system. A classification algorithm based on deep learning methods, using two-dimensional convolutional layers, was implemented to predict the hard X-ray signal standard deviation value using only the antenna signal measurement. Two independent datasets, consisting of 999 and 1761 data pairs each, were used in the analysis. Different realizations of the training/validation process using a deep learning model, obtained overall better results in comparison to other machine learning methods like k-neighbors, decision trees, gradient boost, and random forest. The results of the deep learning algorithm, and even its comparison with other machine learning methods, indicate that a relationship between the electromagnetic UHF radiation and hard X-ray emission can be established, enabling the indirect detection of hard X-ray pulses only using the UHF antenna signal. This indirect detection presents the opportunity to have a simple and low-cost diagnostic, compared to the methods currently used to characterize the pulses of X-rays emitted from plasma focus discharges. © 2013 IEEE.