Examinando por Autor "Challis, P."
Mostrando 1 - 5 de 5
Resultados por página
Opciones de ordenación
Ítem 500 days of SN 2013dy: Spectra and photometry from the ultraviolet to the infrared(Oxford University Press, 2015-07) Pan, Y.-C.; Foley, R.J.; Kromer, M.; Fox, O.D.; Zheng, W.; Challis, P.; Clubb, K.; Filippenko, A.V.; Folatelli, G.; Graham, M.L.; Hillebrandt, W.; Kirshner, R.P.; Lee, W.H.; Pakmor, R.; Patat, F.; Phillips, M.M.; Pignata, G.; Röpke, F.; Seitenzahl, I.; Silverman, J.M.; Simon, J.D.; Sternberg, A.; Stritzinger, M.D.; Taubenberger, S.; Vinko, J.; Wheeler, J.C.SN 2013dy is a Type Ia supernova (SN Ia) for which we have compiled an extraordinary data set spanning from 0.1 to ~ 500 d after explosion. We present 10 epochs of ultraviolet (UV) through near-infrared (NIR) spectra with Hubble Space Telescope/Space Telescope Imaging Spectrograph, 47 epochs of optical spectra (15 of them having high resolution), and more than 500 photometric observations in the BVrRiIZYJH bands. SN 2013dy has a broad and slowly declining light curve (Δm15(B)=0.92 mag), shallow Si II λ6355 absorption, and a low velocity gradient. We detect strong C II in our earliest spectra, probing unburned progenitor material in the outermost layers of the SN ejecta, but this feature fades within a few days. The UV continuum of SN 2013dy, which is strongly affected by the metal abundance of the progenitor star, suggests that SN 2013dy had a relatively high-metallicity progenitor. Examining one of the largest single set of high-resolution spectra for an SN Ia, we find no evidence of variable absorption from circumstellar material. Combining our UV spectra, NIR photometry, and high-cadence optical photometry, we construct a bolometric light curve, showing that SN 2013dy had a maximum luminosity of 10.0+4.8 -3.8 × 1042 erg s-1. We compare the synthetic light curves and spectra of several models to SN 2013dy, finding that SN 2013dy is in good agreement with a solar-metallicity W7 model. © 2015 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.Ítem Extensive HST ultraviolet spectra and multiwavelength observations of SN 2014J in M82 indicate reddening and circumstellar scattering by typical dust(Oxford University Press, 2014) Foley, Ryan J.; Fox, O.D.; McCully, C.; Phillips, M.M.; Sand, D.J.; Zheng, W.; Challis, P.; Filippenko, A.V.; Folatelli, G.; Hillebrandt, W.; Hsiao, E.Y.; Jha, S.W.; Kirshner, R.P.; Kromer, M.; Marion, G.H.; Nelso, M.; Pakmor, R.; Pignata, G.; R̈opke, F.K.; Seitenzahl, I.R.; Silverman, J.M.; Skrutskie, M.; Stritzinger, M.D.SN 2014J in M82 is the closest detected Type Ia supernova (SN Ia) in at least 28 yr and perhaps in 410 yr. Despite its small distance of 3.3 Mpc, SN 2014J is surprisingly faint, peaking at V = 10.6 mag, and assuming a typical SN Ia luminosity, we infer an observed visual extinction of AV = 2.0 ± 0.1 mag. But this picture, with RV = 1.6 ± 0.2, is too simple to account for all observations. We combine 10 epochs (spanning a month) of HST/Space Telescope Imaging Spectrograph (STIS) ultraviolet through near-infrared spectroscopy with HST/Wide Field Camera 3 (WFC3), Katzman Automatic Imaging Telescope, and FanCam photometry from the optical to the infrared and nine epochs of high-resolution TRES (Tillinghast Reflection Echelle Spectrograph) spectroscopy to investigate the sources of extinction and reddening for SN 2014J. We argue that the wide range of observed properties for SN 2014J is caused by a combination of dust reddening, likely originating in the interstellar medium of M82, and scattering off circumstellar material. For this model, roughly half of the extinction is caused by reddening from typical dust (E(B − V) = 0.45 mag and RV = 2.6) and roughly half by scattering off Large Magellanic Cloud-like dust in the circumstellar environment of SN 2014J.Ítem LIGHT CURVES OF 213 TYPE Ia SUPERNOVAE FROM THE ESSENCE SURVEY(IOP PUBLISHING, 2016) Narayan, G.; Rest, A.; Tucker, B. E.; Foley, R. J.; Wood-Vasey, W. M.; Challis, P.; Stubbs, C.; Kirshner, R. P.; Aguilera, C.; Becker, A. C.; Blondin, S.; Clocchiatti, A.; Covarrubias, R.; Damke, G.; Davis, T. M.; Filippenko, A. V.; Ganeshalingam, M.; Garg, A.; Garnavich, P. M.; Hicken, M.; Jha, S. W.; Krisciunas, K.; Leibundgut, B.; Li, W.; Matheson, T.; Miknaitis, G.; Pignata, G.; Prieto, J. L.; Riess, A. G.; Schmidt, B. P.; Silverman, J. M.; Smith, R. C.; Sollerman, J.; Spyromilio, J.; Suntzeff, N. B.; Tonry, J. L.; Zenteno, A.The ESSENCE survey discovered 213 Type Ia supernovae at redshifts 0.1 < z < 0.81 between 2002 and 2008. We present their R- and I-band photometry, measured from images obtained using the MOSAIC II camera at the CTIO Blanco, along with rapid-response spectroscopy for each object. We use our spectroscopic follow-up observations to determine an accurate, quantitative classification, and precise redshift. Through an extensive calibration program we have improved the precision of the CTIO Blanco natural photometric system. We use several empirical metrics to measure our internal photometric consistency and our absolute calibration of the survey. We assess the effect of various potential sources of systematic bias on our measured fluxes, and estimate the dominant term in the systematic error budget from the photometric calibration on our absolute fluxes is similar to 1%.Ítem The high-metallicity explosion environment of the relativistic supernova 2009bb1(2011) Levesque, E. M.; Soderberg, A. M.; Foley, R. J.; Berger, E.; Kewley, L. J.; Chakraborti, A. Ray; Torres, M. A. P.; Challis, P.; Kirshner, R. P.; Barthelmy, S. D.; Bietenholz, M. F.; Chandra, P.; Chaplin, V.; Chevalier, R. A.; Chugai, N.; Connaughton, V.; Copete, A.; Fox, O.; Fransson, C.; Grindlay, J. E.; Hamuy, M. A.; Milne, P. A.; Pignata, G.; Stritzinger, M. D.; Wieringa, M. H.We investigate the environment of the nearby (d 40 Mpc) broad-lined Type Ic supernova SN 2009bb. This event was observed to produce a relativistic outflow likely powered by a central accreting compact object. While such a phenomenon was previously observed only in long-duration gamma-ray bursts (LGRBs), no LGRB was detected in association with SN 2009bb. Using an optical spectrum of the SN 2009bb explosion site, we determine a variety of ISM properties for the host environment, including metallicity, young stellar population age, and star formation rate. We compare the SN explosion site properties to observations of LGRB and broad-lined SN Ic host environments on optical emission line ratio diagnostic diagrams. Based on these analyses, we find that the SN 2009bb explosion site has a metallicity between 1.7Z⊙ and 3.5Z⊙, in agreement with other broadined SN Ic host environments and at odds with the low-redshift LGRB host environments and recently proposed maximum metallicity limits for relativistic explosions. We consider the implications of these findings and the impact that SN 2009bb’s unusual explosive properties and environment have on our understanding of the key physical ingredient that enables some SNe to produce a relativistic outflow.Ítem Two transitional type Ia supernovae located in the Fornax cluster member NGC 1404: SN 2007on and SN 2011iv(EDP Sciences, 2018-03) Gall, C.; Stritzinger, M.D.; Ashall, C.; Baron, E.; Burns, C.R.; Hoeflich, P.; Hsiao, E.Y.; Mazzali, P.A.; Phillips, M.M.; Filippenko, A.V.; Anderson, J.P.; Benetti, S.; Brown, P.J.; Campillay, A.; Challis, P.; Contreras, C.; Elias De La Rosa, N.; Folatelli, G.; Foley, R.J.; Fraser, M.; Holmbo, S.; Marion, G.H.; Morrell, N.; Pan, Y.-C.; Pignata, G.; Suntzeff, N.B.; Taddia, F.; Robledo, S.T.; Valenti, S.We present an analysis of ultraviolet (UV) to near-infrared observations of the fast-declining Type Ia supernovae (SNe Ia) 2007on and 2011iv, hosted by the Fornax cluster member NGC 1404. The B-band light curves of SN 2007on and SN 2011iv are characterised by Δm 15 (B) decline-rate values of 1.96 mag and 1.77 mag, respectively. Although they have similar decline rates, their peak B- and H-band magnitudes differ by ~ 0.60 mag and ~0.35 mag, respectively. After correcting for the luminosity vs. decline rate and the luminosity vs. colour relations, the peak B-band and H-band light curves provide distances that differ by ~ 14% and ~ 9%, respectively. These findings serve as a cautionary tale for the use of transitional SNe Ia located in early-type hosts in the quest to measure cosmological parameters. Interestingly, even though SN 2011iv is brighter and bluer at early times, by three weeks past maximum and extending over several months, its B - V colour is 0.12 mag redder than that of SN 2007on. To reconcile this unusual behaviour, we turn to guidance from a suite of spherical one-dimensional Chandrasekhar-mass delayed-detonation explosion models. In this context, 56 Ni production depends on both the so-called transition density and the central density of the progenitor white dwarf. To first order, the transition density drives the luminosity-width relation, while the central density is an important second-order parameter. Within this context, the differences in the B - V colour evolution along the Lira regime suggest that the progenitor of SN 2011iv had a higher central density than SN 2007on. © ESO 2018.