Examinando por Autor "Chamorro, C."
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Absolute reliability and concurrent validity of hand held dynamometry and isokinetic dynamometry in the hip, knee and ankle joint: Systematic review and meta-analysis(De Gruyter, 2017-01) Chamorro, C.; Armijo-Olivo, S.; De La Fuente, C.; Fuentes, J.; Chirosa, L.J.The purpose of the study is to establish absolute reliability and concurrent validity between hand-held dynamometers (HHDs) and isokinetic dynamometers (IDs) in lower extremity peak torque assessment. Medline, Embase, CINAHL databases were searched for studies related to psychometric properties in muscle dynamometry. Studies considering standard error of measurement SEM (%) or limit of agreement LOA (%) expressed as percentage of the mean, were considered to establish absolute reliability while studies using intra-class correlation coefficient (ICC) were considered to establish concurrent validity between dynamometers. In total, 17 studies were included in the meta-analysis. The COSMIN checklist classified them between fair and poor. Using HHDs, knee extension LOA (%) was 33.59%, 95% confidence interval (CI) 23.91 to 43.26 and ankle plantar flexion LOA (%) was 48.87%, CI 35.19 to 62.56. Using IDs, hip adduction and extension; knee flexion and extension; and ankle dorsiflexion showed LOA (%) under 15%. Lower hip, knee, and ankle LOA (%) were obtained using an ID compared to HHD. ICC between devices ranged between 0.62, CI (0.37 to 0.87) for ankle dorsiflexion to 0.94, IC (0.91to 0.98) for hip adduction. Very high correlation were found for hip adductors and hip flexors and moderate correlations for knee flexors/extensors and ankle plantar/dorsiflexors.Ítem Reliability of shoulder rotators isometric strength test using a novel pulley electromechanical dynamometer. Influence of the assessment position(Kowsar Medical Publishing Company, 2018-06) Chamorro, C.; De La Fuente, C.; Jerez, D.; Campos, C.; Chirosa, L.J.Background: The shoulder complex, because of its relatively extensive freedom of motion, offers a great variety of testing positions and articular planes for strength examination. Despite this, reliability of results are not clearly addressed. A novel pulley electromechanical dynamometer (FED) (functional electronic dynamometer) could be an alternative in strength assessment, however, the relative and absolute reliability have not been reported in the literature. Objectives: To report the results of shoulder internal (IR) and rotators (ER) peak torque reliability in two assessment positions by FED in asymptomatic subjects. Methods: Fifty-two healthy college students were included and tested twice within a two week period. In a supine position, the subjects randomly performed four isometric strength tests (i.e. IR at 40°, IR at 90°, ER at 40°, and ER at 90° of shoulder abduction). Results: The intra-class correlation coefficients (ICC) for relative reliability at 90° were 0.96 (0.94-0.98) for IR and 0.94 (0.90-0.96) for ER. ICC at 40° were 0.89 (0.80-0.94) for IR and 0.97 (0.94-0.98) for ER. Absolute reliability expressed as standard error of measurement compared to the mean (SEM%) and 95% confidence interval (CI) of minimal detectable change percentage (MDC%) at 90° were 8.8% (-20.8, 28.4%) and 11.4% (-28.0, 35.2%) for ER. MDC% at 40° were 12.6% (-35.5, 34.8%) for IR and 18.1% (-28.1, 35, 2%) for ER. Conclusions: Isometric strength testing protocol using FED showed an excellent reproducibility and can be safely used in clinical settings to monitor the strength changes in a group of individuals or in a single individual. © 2018, Asian Journal of Sports Medicine.