Examinando por Autor "Chiappini C."
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Ítem A Perspective on the Milky Way Bulge Bar as Seen from the Neutron-capture Elements Cerium and Neodymium with APOGEE(Institute of Physics, 2024-04-01) Sales-Silva J.V.; Cunha K.; Smith V.V.; Daflon S.; Souto D.; Guerço R.; Queiroz A.; Chiappini C.; Hayes C.R.; Masseron T.; Hasselquist, Sten; Horta D.; Prantzos N.; Zoccali M.; Allende Prieto C.; Barbuy B.; Beaton R.; Bizyaev D.; Fernández-Trincado J.G.; Frinchaboy P.M.; Holtzman J.A.; Johnson J.A.; Jönsson, Henrik; Majewski S.R.; Minniti D.; Nidever D.L.; Schiavon R.P.; Schultheis M.; Sobeck J.; Stringfellow G.S.; Zasowski G.This study probes the chemical abundances of the neutron-capture elements cerium and neodymium in the inner Milky Way from an analysis of a sample of ∼2000 stars in the Galactic bulge bar spatially contained within ∣X Gal∣ < 5 kpc, ∣Y Gal∣ < 3.5 kpc, and ∣Z Gal∣ < 1 kpc, and spanning metallicities between −2.0 ≲ [Fe/H] ≲ +0.5. We classify the sample stars into low- or high-[Mg/Fe] populations and find that, in general, values of [Ce/Fe] and [Nd/Fe] increase as the metallicity decreases for the low- and high-[Mg/Fe] populations. Ce abundances show a more complex variation across the metallicity range of our bulge-bar sample when compared to Nd, with the r-process dominating the production of neutron-capture elements in the high-[Mg/Fe] population ([Ce/Nd] < 0.0). We find a spatial chemical dependence of Ce and Nd abundances for our sample of bulge-bar stars, with low- and high-[Mg/Fe] populations displaying a distinct abundance distribution. In the region close to the center of the MW, the low-[Mg/Fe] population is dominated by stars with low [Ce/Fe], [Ce/Mg], [Nd/Mg], [Nd/Fe], and [Ce/Nd] ratios. The low [Ce/Nd] ratio indicates a significant contribution in this central region from r-process yields for the low-[Mg/Fe] population. The chemical pattern of the most metal-poor stars in our sample suggests an early chemical enrichment of the bulge dominated by yields from core-collapse supernovae and r-process astrophysical sites, such as magnetorotational supernovae.Ítem Light elements Na and Al in 58 bulge spheroid stars from APOGEE(Oxford University Press, 2023-12-01) Barbuy B.; Friaça A.C.S.; Ernandes H.; Moura T.; Masseron T.; Cunha K.; Smith V.V.; Souto D.; Prez-Villegas A.; Souza S.O.; Chiappini C.; Queiroz A.B.A.We identified a sample of 58 candidate stars with metallicity [Fe/H]-0.8 that likely belong to the old bulge spheroid stellar population, and analyse their Na and Al abundances from Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectra. In a previous work, we inspected APOGEE-Stellar Parameter and Chemical Abundance Pipeline abundances of C, N, O, Mg, Al, Ca, Si, and Ce in this sample. Regarding Na lines, one of them appears very strong in about 20 per cent of the sample stars, but it is not confirmed by other Na lines, and can be explained by sky lines, which affect the reduced spectra of stars in a certain radial velocity range. The Na abundances for 15 more reliable cases were taken into account. Al lines in the H band instead appear to be very reliable. Na and Al exhibit a spread in abundances, whereas no spread in N abundances is found, and we found no correlation between them, indicating that these stars could not be identified as second-generation stars that originated in globular clusters. We carry out the study of the behaviour of Na and Al in our sample of bulge stars and literature data by comparing them with chemodynamical evolution model suitable for the Galactic bulge. The Na abundances show a large spread, and the chemodynamical models follow the main data, whereas for aluminum instead, the models reproduce very satisfactorily the nearly secondary-element behaviour of aluminum in the metallicity range below [Fe/H]-1.0. For the lower-metallicity end ([Fe/H <-2.5), hypernovae are assumed to be the main contributor to yields.Ítem The Milky Way bar and bulge revealed by APOGEE and Gaia EDR3(EDP Sciences, 2021-12-01) Queiroz A.B.A.; Chiappini C.; Perez-Villegas A.; Khalatyan A.; Anders F.; Barbuy B.; Santiago B.X.; Steinmetz M.; Cunha K.; Schultheis M.; Majewski S.R.; Minchev I.; Minniti D.; Beaton R.L.; Cohen R.E.; Da Costa L.N.; Fernández-Trincado J.G.; Garcia-Hernández D.A.; Geisler D.; Hasselquist S.; Lane R.R.; Nitschelm C.; Rojas-Arriagada A.; Roman-Lopes A.; Smith V.; Zasowski G.We investigate the inner regions of the Milky Way using data from APOGEE and Gaia EDR3. Our inner Galactic sample has more than 26 500 stars within |XGal|< 5 kpc, |YGal|< 3.5 kpc, |ZGal|< 1 kpc, and we also carry out the analysis for a foreground-cleaned subsample of 8000 stars that is more representative of the bulge-bar populations. These samples allow us to build chemo-dynamical maps of the stellar populations with vastly improved detail. The inner Galaxy shows an apparent chemical bimodality in key abundance ratios [α/Fe], [C/N], and [Mn/O], which probe different enrichment timescales, suggesting a star formation gap (quenching) between the high- and low-α populations. Using a joint analysis of the distributions of kinematics, metallicities, mean orbital radius, and chemical abundances, we can characterize the different populations coexisting in the innermost regions of the Galaxy for the first time. The chemo-kinematic data dissected on an eccentricity-|Z|max plane reveal the chemical and kinematic signatures of the bar, the thin inner disc, and an inner thick disc, and a broad metallicity population with large velocity dispersion indicative of a pressure-supported component. The interplay between these different populations is mapped onto the different metallicity distributions seen in the eccentricity-|Z|max diagram consistently with the mean orbital radius and Vφ distributions. A clear metallicity gradient as a function of |Z|max is also found, which is consistent with the spatial overlapping of different populations. Additionally, we find and chemically and kinematically characterize a group of counter-rotating stars that could be the result of a gas-rich merger event or just the result of clumpy star formation during the earliest phases of the early disc that migrated into the bulge. Finally, based on 6D information, we assign stars a probability value of being on a bar orbit and find that most of the stars with large bar orbit probabilities come from the innermost 3 kpc, with a broad dispersion of metallicity. Even stars with a high probability of belonging to the bar show chemical bimodality in the [α/Fe] versus [Fe/H] diagram. This suggests bar trapping to be an efficient mechanism, explaining why stars on bar orbits do not show a significant, distinct chemical abundance ratio signature.