Examinando por Autor "Christlieb N."
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem The Gaia-ESO Survey: Galactic evolution of sulphur and zinc(EDP Sciences, 2017-08) Duffau S.; Caffau E.; Babusiaux C.; Damiani F.; Franciosini E.; Jofré P.; Sbordone L.; Salvadori S.; Hourihane A.; Lardo C.; Lewis J.; Morbidelli L.; Sousa S.G.; Worley C.C.; Bonifacio P.; Andrievsky S.; Korotin S.; Monaco L.; François P.; Skúladóttir Á.; Bragaglia A.; Donati P.; Spina L.; Gallagher A.J.; Ludwig H.-G.; Christlieb N.; Hansen C.J.; Mott A.; Steffen M.; Zaggia S.; Blanco-Cuaresma S.; Calura F.; Friel E.; Jiménez-Esteban F.M.; Koch A.; Magrini L.; Pancino E.; Tang B.; Tautvaišiene G.; Vallenari A.; Hawkins K.; Gilmore G.; Randich S.; Feltzing S.; Bensby T.; Flaccomio E.; Smiljanic R.; Bayo A.; Carraro G.; Casey A.R.; Costado M.T.Context. Due to their volatile nature, when sulphur and zinc are observed in external galaxies, their determined abundances represent the gas-phase abundances in the interstellar medium. This implies that they can be used as tracers of the chemical enrichment of matter in the Universe at high redshift. Comparable observations in stars are more difficult and, until recently, plagued by small number statistics. Aims. We wish to exploit the Gaia-ESO Survey (GES) data to study the behaviour of sulphur and zinc abundances of a large number of Galactic stars, in a homogeneous way. Methods. By using the UVES spectra of the GES sample, we are able to assemble a sample of 1301 Galactic stars, including stars in open and globular clusters in which both sulphur and zinc were measured. Results. We confirm the results from the literature that sulphur behaves as an α-element. We find a large scatter in [Zn/Fe] ratios among giant stars around solar metallicity. The lower ratios are observed in giant stars at Galactocentric distances less than 7.5 kpc. No such effect is observed among dwarf stars, since they do not extend to that radius. Conclusions. Given the sample selection, giants and dwarfs are observed at different Galactic locations, and it is plausible, and compatible with simple calculations, that Zn-poor giants trace a younger population more polluted by SN Ia yields. It is necessary to extend observations in order to observe both giants and dwarfs at the same Galactic location. Further theoretical work on the evolution of zinc is also necessary. © 2017 ESO.Ítem TOPoS: V. Abundance ratios in a sample of very metal-poor turn-off stars(EDP Sciences, 2018-12) François P.; Caffau E.; Bonifacio P.; Spite M.; Spite F.; Cayrel R.; Christlieb N.; Gallagher A.J.; Klessen R.; Koch A.; Ludwig H.; Monaco L.; Plez B.; Steffen M.; Zaggia S.Context. Extremely metal-poor stars are keys to understand the early evolution of our Galaxy. The ESO large programme TOPoS has been tailored to analyse a new set of metal-poor turn-off stars, whereas most of the previously known extremely metal-poor stars are giant stars. Aims. Sixty five turn-off stars (preselected from SDSS spectra) have been observed with the X-shooter spectrograph at the ESO VLT Unit Telescope 2, to derive accurate and detailed abundances of magnesium, silicon, calcium, iron, strontium and barium. Methods. We analysed medium-resolution spectra (R 10 000) obtained with the ESO X-shooter spectrograph and computed the abundances of several α and neutron-capture elements using standard one-dimensional local thermodynamic equilibrium (1D LTE) model atmospheres. Results. Our results confirms the super-solar [Mg/Fe] and [Ca/Fe] ratios in metal-poor turn-off stars as observed in metal-poor giant stars. We found a significant spread of the [α/Fe] ratios with several stars showing subsolar [Ca/Fe] ratios. We could measure the abundance of strontium in 12 stars of the sample, leading to abundance ratios [Sr/Fe] around the Solar value. We detected barium in two stars of the sample. One of the stars (SDSS J114424-004658) shows both very high [Ba/Fe] and [Sr/Fe] abundance ratios (>1 dex). © ESO 2018.