Examinando por Autor "Cruzat, F."
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Enhanced CRAd activity using enhancer motifs driven by a nucleosome positioning sequence(Cell Press, 2013) Bravo, S.; Núñez, F.; Cruzat, F.; Cafferata, E.; De Ferrari, G.; Montecino, M.; Podhajcer, O.Cancer development involves changes driven by the epigenetic machinery, including nucleosome positioning. Recently, the concept that adenoviral replication may be driven by tumor specific promoters (TSPs) gained support, and several conditionally replicative adenoviruses (CRAd) exhibited therapeutic efficacy in clinical trials. Here, we show for the first time that placing a nucleosome positioning sequence (NPS) upstream of a TSP combined with Wnt-responsive motifs (pART enhancer) enhanced the TSP transcriptional activity and increased the lytic activity of a CRAd. pART enhanced the transcriptional activity of the gastrointestinal cancer (GIC)-specific REG1A promoter (REG1A-pr); moreover, pART also increased the in vitro lytic activity of a CRAd whose replication was driven by REG1A-Pr. The pART enhancer effect in vitro and in vivo was strictly dependent on the presence of the NPS. Indeed, deletion of the NPS was strongly deleterious for the in vivo antitumor efficacy of the CRAd on orthotopically established pancreatic xenografts. pART also enhanced the specific activity of other heterologous promoters; moreover, the NPS was also able to enhance the responsiveness of hypoxia- and NFκB-response elements. We conclude that NPS could be useful for gene therapy approaches in cancer as well as other diseases.Ítem Wnt/β-Catenin Signaling Enhances Cyclooxygenase-2 (COX2) Transcriptional Activity in Gastric Cancer Cells(Public Library of Science, 2011) Nuñez, F.; Bravo, S.; Cruzat, F.; Montecino, M.; Ferrari, G.Increased expression of the cyclooxygenase-2 enzyme (COX2) is one of the main characteristics of gastric cancer (GC), which is a leading cause of death in the world, particularly in Asia and South America. Although the Wnt/β-catenin signaling pathway has been involved in the transcriptional activation of the COX2 gene, the precise mechanism modulating this response is still unknown. Methodology/Principal Findings: Here we studied the transcriptional regulation of the COX2 gene in GC cell lines and assessed whether this phenomenon is modulated by Wnt/β-catenin signaling. We first examined the expression of COX2 mRNA in GC cells and found that there is a differential expression pattern consistent with high levels of nuclear-localized β-catenin. Pharmacological treatment with either lithium or valproic acid and molecular induction with purified canonical Wnt3a significantly enhanced COX2 mRNA expression in a dose- and time-dependent manner. Serial deletion of a 1.6 Kbp COX2 promoter fragment and gain- or loss-of-function experiments allowed us to identify a minimal Wnt/β-catenin responsive region consisting of 0.8 Kbp of the COX2 promoter (pCOX2-0.8), which showed maximal response in gene-reporter assays. The activity of this pCOX2-0.8 promoter region was further confirmed by site-directed mutagenesis and DNA-protein binding assays. Conclusions/Significance: We conclude that the pCOX2-0.8 minimal promoter contains a novel functional T-cell factor/lymphoid enhancer factor (TCF/LEF)-response element (TBE Site II; -689/-684) that responds directly to enhanced Wnt/β-catenin signaling and which may be important for the onset/progression of GC.