Logotipo del repositorio
  • Español
  • English
  • Iniciar sesión
    Ayuda

    Instrucciones:

    El Repositorio Institucional Académico (RIA) de la Universidad Andrés Bello, es un recurso de acceso abierto. No obstante, y de acuerdo con la ley chilena vigente sobre propiedad intelectual, mantiene en acceso restringido diversos documentos, los cuales sólo pueden ser consultados por la comunidad universitaria registrada. Para poder acceder a éstos, verificar el tipo de usuario y método de acceso, siguiendo las instrucciones que se detallan a continuación:

    • Si eres investigador, docente o funcionario con correo @unab.cl, ingresa utilizando tu usuario de computador o intranet (nombre de usuario sin incluir @unab.cl) y clave.
    • Si eres alumno, profesor adjunto o exalumno con correo @uandresbello.edu, debes registrarte primero, pinchando donde dice Nuevo usuario. Una vez registrado y obtenida el alta, ingresa con el correo electrónico institucional y la clave elegida. El registro se debe realizar utilizando la cuenta de correo institucional, no serán válidas cuentas gmail, hotmail o cualquier otro proveedor.
    • Si eres usuario externo, contactar directamente a repositorio@unab.cl
    o
    ¿Nuevo Usuario? Pulse aquí para registrarse¿Has olvidado tu contraseña?
  • Comunidades
  • Todo RIA
  • Contacto
  • Procedimientos de publicaciónDerecho de autorPolíticas del Repositorio
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Domingo, L.R."

Mostrando 1 - 4 de 4
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    Ítem
    A molecular electron density theory study of the [3 + 2] cycloaddition reaction of nitrones with strained allenes
    (Royal Society of Chemistry, 2017) Domingo, L.R.; Ríos-Gutiérrez, M.; Pérez, P.
    The [3 + 2] cycloaddition (32CA) reaction of C-phenyl-N-tert-butylnitrone with 1,2-cyclohexadiene (CHDE), a strained allene, has been studied within Molecular Electron Density Theory (MEDT) at the DFT B3LYP/6-311G(d,p) computational level. This non-polar 32CA reaction, which takes place through a non-concerted two-stage one-step mechanism, proceeds with a moderate Gibbs free activation energy of 22.7 kcal mol-1, and presents low stereo- and regioselectivities. The reaction begins by the creation of a pseudoradical center at the central carbon of the strained allene with a relatively low energy cost, which immediately promotes the formation the first C-C single bond. This scenario is completely different from that of the 32CA reaction involving the simplest allene. The strain present in CHDE changes its reactivity to that characteristic of radical species. Consequently, not distortion as previously proposed, but the radical reactivity type of the strained allene is responsible for the feasibility of this 32CA reaction.
  • Cargando...
    Miniatura
    Ítem
    A molecular electron density theory study of the competitiveness of polar diels–alder and polar alder-ene reactions
    (MDPI AG, 2018) Domingo, L.R.; Ríos-Gutiérrez, M.; Pérez, P.
    The competitiveness of the BF3 Lewis acid (LA) catalyzed polar Diels–Alder (P-DA) and polar Alder-ene (P-AE) reactions of 2-methyl-1,3-butadiene, a diene possessing an allylic hydrogen, with formaldehyde has been studied within the Molecular Electron Density Theory (MEDT) at the MPWB1K/6-311G(d,p) computational level. Coordination of BF3 LA to the oxygen of formaldehyde drastically accelerates both reactions given the high electrophilic character of the BF3:formaldehyde complex. As a consequence, these reactions present a very low activation enthalpy—less than 2.2 kcal·mol−1—thus becoming competitive. In dioxane, the P-AE reaction is slightly favored because of the larger polar character of the corresponding transition state structure (TS). In addition, the Prins reaction between hexahydrophenanthrene and the BF3:formaldehyde complex has also been studied as a computational model of an experimental P-AE reaction. For this LA-catalyzed reaction, the P-DA reaction presents very high activation energy because of the aromatic character of the dienic framework. The present MEDT study allows establishing the similarity of the TSs associated with the formation of the C–C single bond in both reactions, as well as the competitiveness between P-AE and P-DA reactions when the diene substrate possesses at least one allylic hydrogen, thus making it necessary to be considered by experimentalists in highly polar processes. In this work, the term “pseudocyclic selectivity” is suggested to connote the selective formation of structural isomers through stereoisomeric pseudocyclic TSs. © 2018 by the authors.
  • Cargando...
    Miniatura
    Ítem
    A molecular electron density theory study of the participation of tetrazines in aza-Diels-Alder reactions
    (Royal Society of Chemistry, 2020-04) Domingo, L.R.; Ríos-Gutiérrez, M.; Pérez, P.
    The reactions of eight tetrazines of increased electrophilic character with nucleophilic tetramethyl ethylene (TME) and with electrophilic tetracyanoethylene (TCE) have been studied using Molecular Electron Density Theory. These reactions are domino processes comprising an aza-Diels-Alder (ADA) reaction followed by an extrusion of molecular nitrogen, yielding a dihydropyridazine. Analysis of the conceptual DFT (CDFT) indices showed an increase of the electrophilicity and a decrease of the nucleophilicity of tetrazines with an increase of the electron-withdrawing character of the substituent. A very good correlation between the global electron density transfer at the transition structures and the activation enthalpies for the ADA reactions involving TME was found. However, tetrazines have no tendency to react with electrophilic ethylenes such as TCE. Bonding Evolution Theory (BET) analysis of the ADA reaction of dinitro tetrazine with TME showed that the activation energy is mainly associated with the continuous depopulation of the C-C and C-N double bonds. This journal is © 2020 The Royal Society of Chemistry.
  • Cargando...
    Miniatura
    Ítem
    Unveiling the lewis acid catalyzed diels-alder reactions through the molecular electron density theory
    (Multidisciplinary Digital Publishing Institute (MDPI), 2020-05) Domingo, L.R.; Ríos-Gutiérrez, M.; Pérez, P.
    The effects of metal-based Lewis acid (LA) catalysts on the reaction rate and regioselectivity in polar Diels-Alder (P-DA) reactions has been analyzed within the molecular electron density theory (MEDT). A clear linear correlation between the reduction of the activation energies and the increase of the polar character of the reactions measured by analysis of the global electron density transfer at the corresponding transition state structures (TS) is found, a behavior easily predictable by analysis of the electrophilicity ω and nucleophilicity N indices of the reagents. The presence of a strong electron-releasing group in the diene changes the mechanism of these P-DA reactions from a two-stage one-step to a two-step one via formation of a zwitterionic intermediate. However, this change in the reaction mechanism does not have any chemical relevance. This MEDT study makes it possible to establish that the more favorable nucleophilic/electrophilic interactions taking place at the TSs of LA catalyzed P-DA reactions are responsible for the high acceleration and complete regioselectivity experimentally observed. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.