Examinando por Autor "Escobar, B."
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Hemi-Synthesis and Anti-Oomycete Activity of Analogues of Isocordoin(MDPI, 2017-06) Escobar, B.; Montenegro, I.; Villena, J.; Werner, E.; Godoy, P.; Olguín, Y.; Madrid, A.An efficient synthesis of a series of 4-oxyalkyl-isocordoin analogues (2–8) is reported for the first time. Their structures were confirmed by1H-NMR,13C-NMR, and HRMS. Their anti-oomycete activity was evaluated by mycelium and spores inhibition assay against two selected pathogenic oomycetes strains: Saprolegnia parasitica and Saprolegnia australis. The entire series of isocordoin derivatives (except compound 7) showed high inhibitory activity against these oomycete strains. Among them, compound 2 exhibited strong activity, with minimum inhibitory concentration (MIC) and minimum oomyceticidal concentration (MOC) values of 50 µg/mL and 75 µg/mL, respectively. The results showed that 4-oxyalkylated analogues of isocordoin could be potential anti-oomycete agents.Ítem Phosphate favors the biosynthesis of CdS quantum dots in Acidithiobacillus thiooxidans ATCC 19703 by improving metal uptake and tolerance(Frontiers Media, 2018-02) Ulloa, G.; Quezada, C.P.; Araneda, M.; Escobar, B.; Fuentes, E.; Alvarez, S.A.; Castro, M.; Bruna, N.; Espinoza-González, R.; Bravo, D.; Pérez-Donoso, J.M.Recently, we reported the production of Cadmium sulfide (CdS) fluorescent semiconductor nanoparticles (quantum dots, QDs) by acidophilic bacteria of the Acidithiobacillus genus. Here, we report that the addition of inorganic phosphate to Acidithiobacillus thiooxidans ATCC 19703 cultures favors the biosynthesis of CdS QDs at acidic conditions (pH 3.5). The effect of pH, phosphate and cadmium concentrations on QDs biosynthesis was studied by using Response Surface Methodology (RSM), a multivariate technique for analytical optimization scarcely used in microbiological studies to date. To address how phosphate affects intracellular biosynthesis of CdS QDs, the effect of inorganic phosphate on bacterial cadmium-uptake was evaluated. By measuring intracellular levels of cadmium we determined that phosphate influences the capacity of cells to incorporate this metal. A relation between cadmium tolerance and phosphate concentrations was also determined, suggesting that phosphate participates in the adaptation of bacteria to toxic levels of this metal. In addition, QDs-biosynthesis was also favored by the degradation of intracellular polyphosphates. Altogether, our results indicate that phosphate contributes to A. thiooxidans CdS QDs biosynthesis by influencing cadmium uptake and cadmium tolerance. These QDs may also be acting as a nucleation point for QDs formation at acidic pH. This is the first study reporting the effect of phosphates on QDs biosynthesis and describes a new cadmium-response pathway present in A. thiooxidans and most probably in other bacterial species.