Logotipo del repositorio
  • Español
  • English
  • Iniciar sesión
    Ayuda

    Instrucciones:

    El Repositorio Institucional Académico (RIA) de la Universidad Andrés Bello, es un recurso de acceso abierto. No obstante, y de acuerdo con la ley chilena vigente sobre propiedad intelectual, mantiene en acceso restringido diversos documentos, los cuales sólo pueden ser consultados por la comunidad universitaria registrada. Para poder acceder a éstos, verificar el tipo de usuario y método de acceso, siguiendo las instrucciones que se detallan a continuación:

    • Si eres investigador, docente o funcionario con correo @unab.cl, ingresa utilizando tu usuario de computador o intranet (nombre de usuario sin incluir @unab.cl) y clave.
    • Si eres alumno, profesor adjunto o exalumno con correo @uandresbello.edu, debes registrarte primero, pinchando donde dice Nuevo usuario. Una vez registrado y obtenida el alta, ingresa con el correo electrónico institucional y la clave elegida. El registro se debe realizar utilizando la cuenta de correo institucional, no serán válidas cuentas gmail, hotmail o cualquier otro proveedor.
    • Si eres usuario externo, contactar directamente a repositorio@unab.cl
    o
    ¿Has olvidado tu contraseña?
  • Comunidades
  • Todo RIA
  • Contacto
  • Procedimientos de publicaciónDerecho de autorPolíticas del Repositorio
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Espinoza, Alexis"

Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
  • No hay miniatura disponible
    Ítem
    Detection of variables for the diagnosis of overweight and obesity in young Chileans using machine learning techniques
    (Elsevier B.V., 2023-03) Calderon-Diaz, Mailyn; Serey-Castillo, Leonardo J.; Vallejos-Cuevas, Esperanza A.; Espinoza, Alexis; Salas, Rodrigo; Macias-Jimenez, Mayra A.
    Overweight and obesity are considered epidemic problems. The number of factors involved in developing extra body fat makes harder the detection of this problem. Therefore, among the several variables and their levels presented in overweight and obese people, there is a need to improve the classification of people with these conditions. To this aim, in this paper, we conducted a variable analysis from biochemical and lipid profiles in young Chileans with normal weight, overweight, and obesity using machine learning techniques. XGBoost library was selected as the classifier. 21 variables (13 from biochemical and 8 from lipid profiles) were chosen as features. 100 iterations were conducted, and an 80% cross-validation was obtained. The variables with greater relevance in the classification task were total cholesterol, glycemia, LDH enzyme, bilirubin, and VLDL cholesterol. All of these, except bilirubin, are consistent with previous research in which these features have been used to assess risk factors for developing overweight or obesity. Then, further research must include a deep study regarding bilirubin's influence over these conditions. © 2023 Elsevier B.V.. All rights reserved.