Examinando por Autor "Fernandez, Dominique"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem IRE1α activation in bone marrow-derived dendritic cells modulates innate recognition of melanoma cells and favors CD8+ T cell priming(Frontiers Media S.A., 2019-01) Medel, Bernardita; Costoya, Cristobal; Fernandez, Dominique; Pereda, Cristian; Lladser, Alvaro; Sauma, Daniela; Pacheco, Rodrigo; Iwawaki, Takao; Salazar Onfray, Flavio; Osorio, FabiolaThe IRE1α/XBP1s signaling pathway is an arm of the unfolded protein response (UPR) that safeguards the fidelity of the cellular proteome during endoplasmic reticulum (ER) stress, and that has also emerged as a key regulator of dendritic cell (DC) homeostasis. However, in the context of DC activation, the regulation of the IRE1α/XBP1s axis is not fully understood. In this work, we report that cell lysates generated from melanoma cell lines markedly induce XBP1s and certain members of the UPR such as the chaperone BiP in bone marrow derived DCs (BMDCs). Activation of IRE1α endonuclease upon innate recognition of melanoma cell lysates was required for amplification of proinflammatory cytokine production and was necessary for efficient cross-presentation of melanoma-associated antigens without modulating the MHC-II antigen presentation machinery. Altogether, this work provides evidence indicating that ex-vivo activation of the IRE1α/XBP1 pathway in BMDCs enhances CD8+ T cell specific responses against tumor antigens. © 2007 - 2019 Frontiers Media S.A. All Rights Reserved.Ítem T helper type 17 cells contribute to anti-tumour immunity and promote the recruitment of T helper type 1 cells to the tumour(2013) Nuñez, Sarah; Saez, Juan Jose; Fernandez, Dominique; Flores-Santibañez, Felipe; Alvarez, Karla; Tejon, Gabriela; Ruiz, Paulina; Maldonado, Paula; Hidalgo, Yessia; Manriquez, Valeria; Bono, Maria Rosa; Rosemblatt, Mario; Sauma, DanielaT helper type 17 (Th17) lymphocytes are found in high frequency in tumour-burdened animals and cancer patients. These lymphocytes, characterized by the production of interleukin-17 and other pro-inflammatory cytokines, have a well-defined role in the development of inflammatory and autoimmune pathologies; however, their function in tumour immunity is less clear. We explored possible opposing anti-tumour and tumour-promoting functions of Th17 cells by evaluating tumour growth and the ability to promote tumour infiltration of myeloid-derived suppressor cells (MDSC), regulatory T cells and CD4+ interferon-γ+ cells in a retinoic acid-like orphan receptor γt (RORγt) -deficient mouse model. A reduced percentage of Th17 cells in the tumour microenvironment in RORγt-deficient mice led to enhanced tumour growth, that could be reverted by adoptive transfer of Th17 cells. Differences in tumour growth were not associated with changes in the accumulation or suppressive function of MDSC and regulatory T cells but were related to a decrease in the proportion of CD4+ T cells in the tumour. Our results suggest that Th17 cells do not affect the recruitment of immunosuppressive populations but favour the recruitment of effector Th1 cells to the tumour, thereby promoting anti-tumour responses. © 2012 Blackwell Publishing Ltd.