Logotipo del repositorio
  • Español
  • English
  • Iniciar sesión
    Ayuda

    Instrucciones:

    El Repositorio Institucional Académico (RIA) de la Universidad Andrés Bello, es un recurso de acceso abierto. No obstante, y de acuerdo con la ley chilena vigente sobre propiedad intelectual, mantiene en acceso restringido diversos documentos, los cuales sólo pueden ser consultados por la comunidad universitaria registrada. Para poder acceder a éstos, verificar el tipo de usuario y método de acceso, siguiendo las instrucciones que se detallan a continuación:

    • Si eres investigador, docente o funcionario con correo @unab.cl, ingresa utilizando tu usuario de computador o intranet (nombre de usuario sin incluir @unab.cl) y clave.
    • Si eres alumno, profesor adjunto o exalumno con correo @uandresbello.edu, debes registrarte primero, pinchando donde dice Nuevo usuario. Una vez registrado y obtenida el alta, ingresa con el correo electrónico institucional y la clave elegida. El registro se debe realizar utilizando la cuenta de correo institucional, no serán válidas cuentas gmail, hotmail o cualquier otro proveedor.
    • Si eres usuario externo, contactar directamente a repositorio@unab.cl
    o
    ¿Nuevo Usuario? Pulse aquí para registrarse¿Has olvidado tu contraseña?
  • Comunidades
  • Todo RIA
  • Contacto
  • Procedimientos de publicaciónDerecho de autorPolíticas del Repositorio
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Frank, Alexander"

Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
  • No hay miniatura disponible
    Ítem
    Realizing semicomputable simplices by computable dynamical systems
    (Elsevier B.V., 2022-10-14) Coronel, Daniel; Frank, Alexander; Hoyrup, Mathieu; Rojas, Cristóbal
    We study the computability of the set of invariant measures of a computable dynamical system. It is known to be semicomputable but not computable in general, and we investigate which semicomputable simplices can be realized in this way. We prove that every semicomputable finite-dimensional simplex can be realized, and that every semicomputable finite-dimensional convex set is the projection of the set of invariant measures of a computable dynamical system. In particular, there exists a computable system having exactly two ergodic measures, none of which is computable. Moreover, all the dynamical systems that we build are minimal Cantor systems. © 2022 Elsevier B.V.