Examinando por Autor "Gómez, A."
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem High-resolution abundance analysis of red giants in the globular cluster NGC 6522(EDP Sciences, 2014) Barbuy, B.; Chiappini, C.; Cantelli, E.; Depagne, E.; Pignatari, M.; Hirschi, R.; Cescutti, G.; Ortolani, S.; Hill, V.; Zoccali, M.; Minniti, D.; Trevisan, M.; Bica, E.; Gómez, A.Context. The [Sr/Ba] and [Y/Ba] scatter observed in some galactic halo stars that are very metal-poor and in a few individual stars of the oldest known Milky Way globular cluster NGC 6522 have been interpreted as evidence of early enrichment by massive fast-rotating stars (spinstars). Because NGC 6522 is a bulge globular cluster, the suggestion was that not only the very-metal poor halo stars, but also bulge stars at [Fe/H] ~-1 could be used as probes of the stellar nucleosynthesis signatures from the earlier generations of massive stars, but at much higher metallicity. For the bulge the suggestions were based on early spectra available for stars in NGC 6522, with a medium resolution of R ~ 22 000 and a moderate signal-to-noise ratio. Aims. The main purpose of this study is to re-analyse the NGC 6522 stars reported previously by using new high-resolution (R ~ 45 000) and high signal-to-noise spectra (S/N > 100). We aim at re-deriving their stellar parameters and elemental ratios, in particular the abundances of the neutron-capture s-process-dominated elements such as Sr, Y, Zr, La, and Ba, and of the r-element Eu. Methods. High-resolution spectra of four giants belonging to the bulge globular cluster NGC 6522 were obtained at the 8m VLT UT2-Kueyen telescope with the UVES spectrograph in FLAMES-UVES configuration. The spectroscopic parameters were derived based on the excitation and ionization equilibrium of Fea i and Fe ii. Results. Our analysis confirms a metallicity [Fe/H] =-0.95 ± 0.15 for NGC 6522 and the overabundance of the studied stars in Eu (with +0.2 < [Eu/Fe] < + 0.4) and alpha-elements O and Mg. The neutron-capture s-element-dominated Sr, Y, Zr, Ba, and La now show less pronounced variations from star to star. Enhancements are in the range 0.0 < [Sr/Fe] < +0.4, +0.23 < [Y/Fe] < +0.43, 0.0 < [Zr/Fe] < +0.4, 0.0 < [La/Fe] < +0.35, and 0.05 < [Ba/Fe] < +0.55. Conclusions. The very high overabundances of [Y/Fe] previously reported for the four studied stars is not confirmed with the new high-quality spectra. The moderate enhancement in [Sr/Fe] previously reported for one of the re-studied stars is confirmed, but the strong enhancements of this ratio for the other two stars are not confirmed. Despite the moderate enhancements found for the neutron-capture s-element-dominated species, none of the four stars studied here show positive values for all [Sr/Ba], [Y/Ba] and [Zr/Ba] ratios. The re-studied stars are now compatible not only with the interpretation that the s-process enhancements in these very old stars are due to spinstars, but also with alternative models such as mass transfer from s-process-rich AGB stars. Note, however, that when our results are interpreted in the context of more extended datasets from the literature, the spinstar scenario still seems to be favoured. © 2014 ESO.Ítem Zinc abundances in Galactic bulge field red giants: Implications for damped Lyman- α systems ∗ ∗ ∗(EDP Sciences, 2015-08) Barbuy, B.; Friaça, A.C.S.; Da Silveira, C.R.; Hill, V.; Zoccali, M.; Minniti, D.; Renzini, A.; Ortolani, S.; Gómez, A.Context. Zinc in stars is an important reference element because it is a proxy to Fe in studies of damped Lyman- systems (DLAs), permitting a comparison of chemical evolution histories of bulge stellar populations and DLAs. In terms of nucleosynthesis, it behaves as an alpha element because it is enhanced in metal-poor stars. Abundance studies in different stellar populations can give hints to the Zn production in different sites. Aims. The aim of this work is to derive the iron-peak element Zn abundances in 56 bulge giants from high resolution spectra. These results are compared with data from other bulge samples, as well as from disk and halo stars, and damped Lyman- systems, in order to better understand the chemical evolution in these environments. Methods. High-resolution spectra were obtained using FLAMES+UVES on the Very Large Telescope. We computed the Zn abundances using the Zn i lines at 4810.53 and 6362.34 We considered the strong depression in the continuum of the Zn i 6362.34 line, which is caused by the wings of the Ca i 6361.79 line suffering from autoionization. CN lines blending the Zn i 6362.34 A line are also included in the calculations. Results. We find [Zn/Fe] = +0.24 ?0.02 in the range a'1.3 < [Fe/H] < a'0.5 and [Zn/Fe] = +0.06 ?0.02 in the range a'0.5 < [Fe/H] < a'0.1, whereas for [Fe/H] ≥ a'0.1, it shows a spread of a'0.60 < [Zn/Fe] < +0.15, with most of these stars having low [Zn/Fe] < 0.0. These low zinc abundances at the high metallicity end of the bulge define a decreasing trend in [Zn/Fe] with increasing metallicities. A comparison with Zn abundances in DLA systems is presented, where a dust-depletion correction was applied for both Zn and Fe. When we take these corrections into account, the [Zn/Fe] vs. [Fe/H] of the DLAs fall in the same region as the thick disk and bulge stars. Finally, we present a chemical evolution model of Zn enrichment in massive spheroids, representing a typical classical bulge evolution. © 2015 ESO.