Examinando por Autor "Gilbank, D.G."
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Gemini Observations of Galaxies in Rich Early Environments (GOGREEN) I: survey description(Oxford University Press, 2017-06) Balogh, M.L.; Gilbank, D.G.; Muzzin, A.; Rudnick, G.; Cooper, M.C.; Lidman, C.; Biviano, A.; Demarco, R.; McGee, S.L.; Nantais, J.B.; Noble, A.; Old, L.; Wilson, G.; Yee, H.K.C.; Bellhouse, C.; Cerulo, P.; Chan, J.; Pintos-Castro, I.; Simpson, R.; van der Burg, R.F.J.; Zaritsky, D.; Ziparo, F.; Alonso, M.V.; Bower, R.G.; Lucia, G.D.; Finoguenov, A.; Lambas, D.G.; Muriel, H.; Parker, L.C.; Rettura, A.; Valotto, C.; Wetzel, A.We describe a new Large Program in progress on the Gemini North and South telescopes: Gemini Observations of Galaxies in Rich Early Environments (GOGREEN). This is an imaging and deep spectroscopic survey of 21 galaxy systems at 1 < z < 1.5, selected to span a factor >10 in halo mass. The scientific objectives include measuring the role of environment in the evolution of low-mass galaxies, and measuring the dynamics and stellar contents of their host haloes. The targets are selected from the SpARCS, SPT, COSMOS, and SXDS surveys, to be the evolutionary counterparts of today's clusters and groups. The newred-sensitive Hamamatsu detectors on GMOS, coupled with the nod-and-shuffle sky subtraction, allow simultaneous wavelength coverage over λ ~ 0.6-1.05 μm, and this enables a homogeneous and statistically complete redshift survey of galaxies of all types. The spectroscopic sample targets galaxies with AB magnitudes z' < 24.25 and [3.6] μm < 22.5, and is therefore statistically complete for stellar masses M* ≳ 1010.3M⊙, for all galaxy types and over the entire redshift range. Deep, multiwavelength imaging has been acquired over larger fields for most systems, spanning u through K, in addition to deep IRAC imaging at 3.6 μm. The spectroscopy is ~50 per cent complete as of semester 17A, and we anticipate a final sample of ~500 new cluster members. Combined with existing spectroscopy on the brighter galaxies from GCLASS, SPT, and other sources, GOGREEN will be a large legacy cluster and field galaxy sample at this redshift that spectroscopically covers a wide range in stellar mass, halo mass, and clustercentric radius.Ítem Spectroscopic characterization of galaxy clusters in RCS-1: Spectroscopic confirmation, redshift accuracy, and dynamical mass-richness relation(Oxford University Press, 2018-05) Gilbank, D.G.; Barrientos, L.F.; Ellingson, E.; Blindert, K.; Yee, H.K.C.; Anguita, T.; Gladders, M.D.; Hall, P.B.; Hertling, G.; Infante, L.; Yan, R.; Carrasco, M.; Garcia-Vergara, C.; Dawson, K.S.; Lidman, C.; Morokuma, T.We present follow-up spectroscopic observations of galaxy clusters from the first Red-sequence Cluster Survey (RCS-1). This work focuses on two samples, a lower redshift sample of ~30 clusters ranging in redshift from z~0.2-0.6 observedwith multiobject spectroscopy (MOS) on 4-6.5-m class telescopes and a z ~ 1 sample of ~10 clusters 8-m class telescope observations. We examine the detection efficiency and redshift accuracy of the now widely used redsequence technique for selecting clusters via overdensities of red-sequence galaxies. Using both these data and extended samples including previously published RCS-1 spectroscopy and spectroscopic redshifts from SDSS, we find that the red-sequence redshift using simple twofilter cluster photometric redshifts is accurate to σz ≈ 0.035(1 + z) in RCS-1. This accuracy can potentially be improved with better survey photometric calibration. For the lower redshift sample, ~5 per cent of clusters show some (minor) contamination from secondary systems with the same red-sequence intruding into the measurement aperture of the original cluster. At z ~ 1, the rate rises to ~20 per cent. Approximately ten per cent of projections are expected to be serious, where the two components contribute significant numbers of their red-sequence galaxies to another cluster. Finally, we present a preliminary study of the mass-richness calibration using velocity dispersions to probe the dynamical masses of the clusters. We find a relation broadly consistent with that seen in the local universe from the WINGS sample at z ~ 0.05. © 2018 The Author(s).