Examinando por Autor "Giustiniani, Michela"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Gas hydrate and free gas estimation from seismic analysis offshore Chiloé island (Chile)(Servicio Nacional de Geologia y Mineria, 2016-09) Vargas-Cordero, Iván de la Cruz; Tinivella, Umberta; Villar-Muñoz, Lucía; Giustiniani, MichelaIn this study one seismic section offshore Chiloé Island was analyzed to better define the seismic character of the hydrate-bearing sediments. The velocity analysis was used to estimate the gas-phase concentration and relate it to the geological features. The velocity model allowed us to recognize two important layers that characterize hydrate- and free gasbearing sediments above and below the BSR respectively: one located above the BSR, characterized by high velocity (1,800-2,200 m/s) and a second one, below the BSR, characterized by low velocity (1,600-1,700 m/s). A weak reflector at about 100 m below the BSR marks the base of the second layer. AVO analysis and offset stack sections confirming that the reflector interpreted as BGR is related to free gas presence in the pore space. The velocity field is affected by lateral variation, showing maximum (above the BSR) and minimum (below the BSR) values in the sector. Here, the highest gas hydrate and free gas concentrations were calculated, obtaining 9.5% and 0.5% of total volume respectively. A variable BSR depth (from 300 to 600 mbsf) can be justified supposing a variable geothermal gradient (from 25 to 45 °C/km).Ítem Gas Hydrate Estimate in an Area of Deformation and High Heat Flow at the Chile Triple Junction(MDPI AG, 2019-01-01) Villar-Muñoz, Lucía; Vargas-Cordero, Iván; Bento, Joaquim P.; Tinivella, Umberta; Fernandoy, Francisco; Giustiniani, Michela; Behrmann, Jan H.; Calderón-Díaz, SergioLarge amounts of gas hydrate are present in marine sediments offshore Taitao Peninsula, near the Chile Triple Junction. Here, marine sediments on the forearc contain carbon that is converted to methane in a regime of very high heat flow and intense rock deformation above the downgoing oceanic spreading ridge separating the Nazca and Antarctic plates. This regime enables vigorous fluid migration. Here, we present an analysis of the spatial distribution, concentration, estimate of gas-phases (gas hydrate and free gas) and geothermal gradients in the accretionary prism, and forearc sediments offshore Taitao (45.5◦–47◦ S). Velocity analysis of Seismic Profile RC2901-751 indicates gas hydrate concentration values <10% of the total rock volume and extremely high geothermal gradients (<190◦C·km−1). Gas hydrates are located in shallow sediments (90–280 m below the seafloor). The large amount of hydrate and free gas estimated (7.21 × 1011 m3 and 4.1 × 1010 m3; respectively), the high seismicity, the mechanically unstable nature of the sediments, and the anomalous conditions of the geothermal gradient set the stage for potentially massive releases of methane to the ocean, mainly through hydrate dissociation and/or migration directly to the seabed through faults. We conclude that the Chile Triple Junction is an important methane seepage area and should be the focus of novel geological, oceanographic, and ecological research.