Logotipo del repositorio
  • Español
  • English
  • Iniciar sesión
    Ayuda

    Instrucciones:

    El Repositorio Institucional Académico (RIA) de la Universidad Andrés Bello, es un recurso de acceso abierto. No obstante, y de acuerdo con la ley chilena vigente sobre propiedad intelectual, mantiene en acceso restringido diversos documentos, los cuales sólo pueden ser consultados por la comunidad universitaria registrada. Para poder acceder a éstos, verificar el tipo de usuario y método de acceso, siguiendo las instrucciones que se detallan a continuación:

    • Si eres investigador, docente o funcionario con correo @unab.cl, ingresa utilizando tu usuario de computador o intranet (nombre de usuario sin incluir @unab.cl) y clave.
    • Si eres alumno, profesor adjunto o exalumno con correo @uandresbello.edu, debes registrarte primero, pinchando donde dice Nuevo usuario. Una vez registrado y obtenida el alta, ingresa con el correo electrónico institucional y la clave elegida. El registro se debe realizar utilizando la cuenta de correo institucional, no serán válidas cuentas gmail, hotmail o cualquier otro proveedor.
    • Si eres usuario externo, contactar directamente a repositorio@unab.cl
    o
    ¿Nuevo Usuario? Pulse aquí para registrarse¿Has olvidado tu contraseña?
  • Comunidades
  • Todo RIA
  • Contacto
  • Procedimientos de publicaciónDerecho de autorPolíticas del Repositorio
  1. Inicio
  2. Buscar por autor

Examinando por Autor "González, Mauricio Contreras"

Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
  • No hay miniatura disponible
    Ítem
    Modified Heisenberg Commutation Relations and the Infinite-Square Well Potential: Some Simple Consequences
    (Multidisciplinary Digital Publishing Institute (MDPI), 2024-10) González, Mauricio Contreras; Herrera, Roberto Ortiz; Gonzalez, José Mauricio
    We explore some consequences of modifying the usual Heisenberg commutation relations of two simple systems: first, the one-dimensional quantum system given by the infinite square-well potential, and second, the case of a gas of N non-interacting particles in a box of volume V, which permit obtaining analytical solutions. We analyse two possible cases of modified Heisenberg commutation relations: one with a linear and non-linear dependence on the position and another with a linear and quadratic dependence on the momentum. We determine the eigenfunctions, probability densities, and energy eigenvalues for the one-dimensional square well for both deformation cases. For linear and non-linear x deformation dependence, the wave functions and energy levels change substantially when the weight factor associated with the modification term increases. Here, the energy levels are rescaled homogeneously. Instead, for linear and quadratic momentum p deformation dependence, the changes in the energy spectrum depend on the energy level. However, the probability densities are the same as those without any modification. For the non-interacting gas, the position deformation implies that the ideal gas state equation is modified, acquiring the form of a virial expansion in the volume, whereas the internal energy is unchanged. Instead, the ideal gas state equation remains unchanged at the lowest order in (Formula presented.) for the momentum modification case. However, the temperature modifies the internal energy at the lowest order in (Formula presented.). Thus, this study indicates that gravity could generate forces on particles by modifying the Heisenberg commutation relations. Therefore, gravitation could be the cause of the other three forces of nature.
  • No hay miniatura disponible
    Ítem
    Modified Heisenberg Commutation Relations and the Infinite-Square Well Potential: Some Simple Consequences
    (Multidisciplinary Digital Publishing Institute (MDPI), 0024-10) González, Mauricio Contreras; Herrera, Roberto Ortiz; Gonzalez, José Mauricio
    We explore some consequences of modifying the usual Heisenberg commutation relations of two simple systems: first, the one-dimensional quantum system given by the infinite square-well potential, and second, the case of a gas of N non-interacting particles in a box of volume V, which permit obtaining analytical solutions. We analyse two possible cases of modified Heisenberg commutation relations: one with a linear and non-linear dependence on the position and another with a linear and quadratic dependence on the momentum. We determine the eigenfunctions, probability densities, and energy eigenvalues for the one-dimensional square well for both deformation cases. For linear and non-linear x deformation dependence, the wave functions and energy levels change substantially when the weight factor associated with the modification term increases. Here, the energy levels are rescaled homogeneously. Instead, for linear and quadratic momentum p deformation dependence, the changes in the energy spectrum depend on the energy level. However, the probability densities are the same as those without any modification. For the non-interacting gas, the position deformation implies that the ideal gas state equation is modified, acquiring the form of a virial expansion in the volume, whereas the internal energy is unchanged. Instead, the ideal gas state equation remains unchanged at the lowest order in (Formula presented.) for the momentum modification case. However, the temperature modifies the internal energy at the lowest order in (Formula presented.). Thus, this study indicates that gravity could generate forces on particles by modifying the Heisenberg commutation relations. Therefore, gravitation could be the cause of the other three forces of nature. © 2024 by the authors.