Examinando por Autor "Granacher, Urs"
Mostrando 1 - 7 de 7
Resultados por página
Opciones de ordenación
Ítem Effects of Plyometric Jump Training on the Reactive Strength Index in Healthy Individuals Across the Lifespan: A Systematic Review with Meta-analysis(Springer Science and Business Media Deutschland GmbH, 2023-05) Ramirez-Campillo, Rodrigo; Thapa, Rohit K.; Afonso, José; Perez-Castilla, Alejandro; Bishop, Chris; Byrne, Paul J.; Granacher, UrsBackground: The reactive strength index (RSI) is meaningfully associated with independent markers of athletic (e.g., linear sprint speed) and neuromuscular performance [e.g., stretch–shortening cycle (SSC)]. Plyometric jump training (PJT) is particularly suitable to improve the RSI due to exercises performed in the SSC. However, no literature review has attempted to meta-analyse the large number of studies regarding the potential effects of PJT on the RSI in healthy individuals across the lifespan. Objective: The aim of this systematic review with meta-analysis was to examine the effects of PJT on the RSI of healthy individuals across the lifespan compared with active/specific-active controls. Methods: Three electronic databases (PubMed, Scopus, Web of Science) were searched up to May 2022. According to the PICOS approach, the eligibility criteria were: (1) healthy participants, (2) PJT interventions of ≥ 3 weeks, (3) active (e.g., athletes involved in standard training) and specific-active (e.g., individuals using heavy resistance training) control group(s), (4) a measure of jump-based RSI pre-post training, and (5) controlled studies with multi-groups in randomised and non-randomised designs. The Physiotherapy Evidence Database (PEDro) scale was used to assess the risk of bias. The random-effects model was used to compute the meta-analyses, reporting Hedges’ g effect sizes (ES) with 95% confidence intervals (95% CIs). Statistical significance was set at p ≤ 0.05. Subgroup analyses were performed (chronological age; PJT duration, frequency, number of sessions, total number of jumps; randomization). A meta-regression was conducted to verify if PJT frequency, duration, and total number of sessions predicted the effects of PJT on the RSI. Certainty or confidence in the body of evidence was assessed using Grading of Recommendations Assessment, Development, and Evaluation (GRADE). Potential adverse health effects derived from PJT were researched and reported. Results: Sixty-one articles were meta-analysed, with a median PEDro score of 6.0, a low risk of bias and good methodological quality, comprising 2576 participants with an age range of 8.1–73.1 years (males, ~ 78%; aged under 18 years, ~ 60%); 42 studies included participants with a sport background (e.g., soccer, runners). The PJT duration ranged from 4 to 96 weeks, with one to three weekly exercise sessions. The RSI testing protocols involved the use of contact mats (n = 42) and force platforms (n = 19). Most studies reported RSI as mm/ms (n = 25 studies) from drop jump analysis (n = 47 studies). In general, PJT groups improved RSI compared to controls: ES = 0.54, 95% CI 0.46–0.62, p < 0.001. Training-induced RSI changes were greater (p = 0.023) for adults [i.e., age ≥ 18 years (group mean)] compared with youth. PJT was more effective with a duration of > 7 weeks versus ≤ 7 weeks, > 14 total PJT sessions versus ≤ 14 sessions, and three weekly sessions versus < three sessions (p = 0.027–0.060). Similar RSI improvements were noted after ≤ 1080 versus > 1080 total jumps, and for non-randomised versus randomised studies. Heterogeneity (I2) was low (0.0–22.2%) in nine analyses and moderate in three analyses (29.1–58.1%). According to the meta-regression, none of the analysed training variables explained the effects of PJT on RSI (p = 0.714–0.984, R2 = 0.0). The certainty of the evidence was moderate for the main analysis, and low-to-moderate across the moderator analyses. Most studies did not report soreness, pain, injury or related adverse effects related to PJT. Conclusions: The effects of PJT on the RSI were greater compared with active/specific-active controls, including traditional sport-specific training as well as alternative training interventions (e.g., high-load slow-speed resistance training). This conclusion is derived from 61 articles with low risk of bias (good methodological quality), low heterogeneity, and moderate certainty of evidence, comprising 2576 participants. PJT-related improvements on RSI were greater for adults versus youths, after > 7 training weeks versus ≤ 7 weeks, with > 14 total PJT versus ≤ 14 sessions, and with three versus < three weekly sessions. © 2023, The Author(s).Ítem Effects of Sand-Based Plyometric-Jump Training in Combination with Endurance Running on Outdoor or Treadmill Surface on Physical Fitness in Young Adult Males(Journal of Sport Science and Medicine, 2022-06) Singh, Gaurav; Kushwah, Gaurav; Singh, Tanvi; Thapa, Rohit Kumar; Granacher, Urs; Ramirez-Campillo, RodrigoThis study aimed at examining the effects of nine weeks of sandbased plyometric-jump training (PJT) combined with endurance running on either outdoor or treadmill surface on measures of physical fitness. Male participants (age, 20.1 ± 1.7 years) were randomly assigned to a sand-based PJT combined with endurance running on outdoor surface (OT, n = 25) or treadmill surface (TT, n = 25). The endurance running intervention comprised a mixed training method, i.e., long slow distance, tempo, and interval running drills. A control group was additionally included in this study (CG, n = 25). Participants in CG followed their regular physical activity as OT and TT but did not receive any specific intervention. Individuals were assessed for their 50-m linear sprint time, standing long jump (SLJ) distance, cardiorespiratory fitness (i.e., Cooper test), forced vital capacity (FVC), calf girth, and resting heart rate (RHR). A three (groups: OT, TT, CG) by two (time: pre, post) ANOVA for repeated measures was used to analyze the exercise-specific effects. In case of significant group-by-time interactions, Bonferroni adjusted paired (within-group) and independent (between-group comparisons at post) t-tests were used for post-hoc analyses. Significant group-by-time interactions were found for all dependent variables (p < 0.001 – 0.002, ɳp2 = 0.16 – 0.78). Group-specific post-hoc tests showed improvements for all variables after OT (p < 0.001, Hedges´g effect size [g] = 0.05 – 1.94) and TT (p < 0.001, g = 0.04 – 2.73), but not in the CG (p = 0.058 – 1.000, g = 0.00 – 0.34). Compared to CG, OT showed larger SLJ (p = 0.001), cardiorespiratory fitness (p = 0.004), FVC (p = 0.008), and RHR (p < 0.001) improvements. TT showed larger improvements in SLJ (p = 0.036), cardiorespiratory fitness (p < 0.001), and RHR (p < 0.001) compared with CG. Compared to OT, TT showed larger improvements for SLJ (p = 0.018). In conclusion, sand-based PJT combined with either OT or TT similarly improved most measures of physical fitness, with greater SLJ improvement after TT. Coaches may use both concurrent exercise regimes based on preferences and logistical constrains (e.g., weather; access to treadmill equipment). © Journal of Sports Science and Medicine.Ítem Effects of Therapies Involving Plyometric-Jump Training on Physical Fitness of Youth with Cerebral Palsy: A Systematic Review with Meta-Analysis(Multidisciplinary Digital Publishing Institute (MDPI), 2024-06) Garcia-Carrillo, Exal; Ramirez-Campillo, Rodrigo; Izquierdo, Mikel; Elnaggar, Ragab K.; Afonso, José; Peñailillo, Luis; Araneda, Rodrigo; Ebner-Karestinos, Daniela; Granacher, UrsThe aim of this systematic review was to assess the effects of plyometric-jump training (PJT) on the physical fitness of youth with cerebral palsy (CP) compared with controls (i.e., standard therapy). The PRISMA 2020 guidelines were followed. Eligibility was assessed using the PICOS approach. Literature searches were conducted using the PubMed, Web of Science, and SCOPUS databases. Methodological study quality was assessed using the PEDro scale. Data were meta-analyzed by applying a random-effects model to calculate Hedges’ g effect sizes (ES), along with 95% confidence intervals (95% CI). The impact of heterogeneity was assessed (I2 statistic), and the certainty of evidence was determined using the GRADE approach. Eight randomized-controlled studies with low-to-moderate methodological quality were included, involving male (n = 225) and female (n = 138) youth aged 9.5 to 14.6 years. PJT interventions lasted between 8 and 12 weeks with 2–4 weekly sessions. Compared with controls, PJT improved the muscle strength (ES = 0.66 [moderate], 95% CI = 0.36–0.96, p < 0.001, I2 = 5.4%), static (ES = 0.69 [moderate], 95% CI= 0.33–1.04, p < 0.001, I2 = 0.0%) and dynamic balance (ES = 0.85 [moderate], 95% CI = 0.12–1.58, p = 0.023, I2 = 81.6%) of youth with CP. Therefore, PJT improves muscle strength and static and dynamic balance in youth with CP compared with controls. However, more high-quality randomized-controlled trials with larger sample sizes are needed to provide a more definitive recommendation regarding the use and safety of PJT to improve measures of physical fitness.Ítem Effects of Upper-Body Plyometric Training on Physical Fitness in Healthy Youth and Young Adult Participants: A Systematic Review with Meta-Analysis(Springer Science and Business Media Deutschland GmbH, 2023-12) Garcia-Carrillo, Exal; Ramirez-Campillo, Rodrigo; Thapa, Rohit K.; Afonso, José; Granacher, Urs; Izquierdo, MikelBackground: Upper-body plyometric training (UBPT) is a commonly used training method, yet its effects on physical fitness are inconsistent and there is a lack of comprehensive reviews on the topic. Objective: To examine the effects of UBPT on physical fitness in healthy youth and young adult participants compared to active, specific-active, and passive controls. Methods: This systematic review followed PRISMA 2020 guidelines and utilized the PICOS framework. PubMed, WOS, and SCOPUS were searched. Studies were assessed for eligibility using the PICOS framework. The effects of UBPT on upper-body physical fitness were assessed, including maximal strength, medicine ball throw performance, sport-specific throwing performance, and upper limb muscle volume. The risk of bias was evaluated using the PEDro scale. Means and standard deviations were used to calculate effect sizes, and the I 2 statistic was used to assess heterogeneity. Publication bias was assessed using the extended Egger's test. Certainty of evidence was rated using the GRADE scale. Additional analyses included sensitivity analyses and adverse effects. Results: Thirty-five studies were included in the systematic review and 30 studies in meta-analyses, involving 1412 male and female participants from various sport-fitness backgrounds. Training duration ranged from 4 to 16 weeks. Compared to controls, UBPT improved maximal strength (small ES = 0.39 95% CI = 0.15–0.63, p = 0.002, I 2 = 29.7%), medicine ball throw performance (moderate ES = 0.64, 95% CI = 0.43–0.85, p < 0.001, I 2 = 46.3%), sport-specific throwing performance (small ES = 0.55, 95% CI = 0.25–0.86, p < 0.001, I 2 = 36.8%), and upper limbs muscle volume (moderate ES = 0.64, 95% CI = 0.20–1.08, p = 0.005, I 2 = 0.0%). The GRADE analyses provided low or very low certainty for the recommendation of UBPT for improving physical fitness in healthy participants. One study reported one participant with an injury due to UBPT. The other 34 included studies provided no report measure for adverse effects linked to UBPT. Conclusions: UBPT interventions may enhance physical fitness in healthy youth and young adult individuals compared to control conditions. However, the certainty of evidence for these recommendations is low or very low. Further research is needed to establish the optimal dose of UBPT and to determine its effect on female participants and its transfer to other upper-body dominated sports.Ítem Making neuroscience a priority in Initial Teacher Education curricula: a call for bridging the gap between research and future practices in the classroom(Neurotak Publishing, 2023) Sortwell, Andrew; Evgenia, Gkintoni; Zagarella, Samuel; Granacher, Urs; Forte, Pedro; Ferraz, Ricardo; Ramirez-Campillo, Rodrigo; Carter-Thuillier, Bastian; Konukman, Ferman; Nouri, Ali; Bentley, Bernadette; Marandi, Pegah; Jemni, MonèmConstant global advancements and expanding evidence in the neuroscience of learning have provided compelling support for the inclusion of neuroscience as a crucial content priority in initial teacher education. Existing research confirms the efficacy of neurocognitive interventions for atypical and typical school-aged learners in a variety of key subject areas. Despite advances in the neuroscience of learning, the adoption of contemporary approaches and strategies that support and enhance neurocognitive development by education practitioners is yet to be the norm. Incorporating neuroscience education content, research, and practical application into initial teacher education curricula will enhance teacher preparation, leading to evidence-based education. © 2023 by Sortwell et al.Ítem Overweight and Obese Adult Patients Show Larger Benefits from Concurrent Training Compared with Pharmacological Metformin Treatment on Insulin Resistance and Fat Oxidation(MDPI, 2022-11) Azócar Gallardo, Jairo; Ramirez Campillo, Rodrigo; Afonso, José; Sá, Mário; Granacher, Urs; González Rojas, Luis; Ojeda Aravena, Alex; García García, José ManuelMetformin, a drug widely used to treat insulin resistance, and training that combines aerobic and strength exercise modalities (i.e., concurrent training) may improve insulin sensitivity. However, there is a paucity of clinical trials investigating the effects of concurrent training, particularly on insulin resistance and fat oxidation in overweight and obese patients. Furthermore, only a few studies have compared the effects of concurrent training with metformin treatment. Therefore, the aim of this study was to examine the effects of a 12-week concurrent training program versus pharmaceutical treatment with metformin on maximum fat oxidation, glucose metabolism, and insulin resistance in overweight or obese adult patients. Male and female patients with insulin resistance were allocated by convenience to a concurrent training group (n = 7 (2 males); age = 32.9 ± 8.3 years; body mass index = 30 ± 4.0 kg·m−2) or a metformin group (n = 7 (2 males); age = 34.4 ± 14.0 years; body mass index = 34.4 ± 6.0 kg·m−2). Before and after the interventions, all participants were assessed for total body mass, body mass index, fat mass, fat-free mass, maximum oxygen consumption, maximal fat oxidization during exercise, fasting glucose, and insulin resistance through the homeostatic model assessment (HOMA-IR). Due to non-normal distribution of the variable maximal fat oxidation, the Mann–Whitney U test was applied and revealed better maximal fat oxidization (Δ = 308%) in the exercise compared with the metformin group (Δ = −30.3%; p = 0.035). All other outcome variables were normally distributed, and significant group-by-time interactions were found for HOMA-IR (p < 0.001, Δ = −84.5%), fasting insulin (p < 0.001, Δ = −84.6%), and increased maximum oxygen consumption (p = 0.046, Δ = 12.3%) in favor of the exercise group. Similar changes were found in both groups for the remaining dependent variables. Concurrent training seems to be more effective compared with pharmaceutical metformin treatment to improve insulin resistance and fat oxidation in overweight and obese adult patients with insulin resistance. The rather small sample size calls for more research in this area. © 2022 by the authors.Ítem Plyometric-Jump Training Effects on Physical Fitness and Sport-Specific Performance According to Maturity: A Systematic Review with Meta-analysis(2023-03) Ramirez-Campillo, Rodrigo; Andrew, Sortwell; Moran, Jason; José, Afonso; Clemente, Filipe Manuel; Lloyd, Rhodri S; Jon L, Oliver,; Jason, Pedley,; Granacher, UrsBackground: Among youth, plyometric-jump training (PJT) may provide a safe, accessible, and time-efficient training method. Less is known on PJT effectiveness according to the maturity status. Objective: This systematic review with meta-analysis set out to analyse the body of peer-reviewed articles assessing the effects of PJT on measures of physical fitness [i.e., maximal dynamic strength; change of direction (COD) speed; linear sprint speed; horizontal and vertical jump performance; reactive strength index] and sport-specific performance (i.e., soccer ball kicking and dribbling velocity) according to the participants’ maturity status. Methods: Systematic searches were conducted in three electronic databases using the following inclusion criteria: (i) Population: healthy participants aged < 18 years; (ii) Intervention: PJT program including unilateral and/or bilateral jumps; (iii) Comparator: groups of different maturity status with control groups; (iv) Outcomes: at least one measure of physical fitness and/or sport-specific performance before and after PJT; (v) experimental design with an active or passive control group, and two or more maturity groups exposed to the same PJT. The DerSimonian and Laird random-effects models were used to compute the meta-analysis. The methodological quality of the studies was assessed using the PEDro checklist. GRADE was applied to assess certainty of evidence. Results: From 11,028 initially identified studies across three electronic databases, 11 studies were finally eligible to be meta-analysed (n total = 744; seven studies recruited males; four studies recruited females). Three studies were rated as high quality (6 points), and eight studies were of moderate quality (5 points). Seven studies reported the maturity status using age at peak height velocity (PHV; pre-PHV values up to − 2.3; post-PHV up to 2.5). Another four studies used Tanner staging (from Tanner I to V). The training programmes ranged from 4 to 36 weeks, using 1–3 weekly training sessions. When compared to controls, pre-PHV and post-PHV participants obtained small-to-moderate improvements (ES = 0.35 − 0.80, all p < 0.05) in most outcomes (i.e., sport-specific performance; maximal dynamic strength; linear sprint; horizontal jump; reactive strength index) after PJT. The contrast of pre-PHV with post-PHV youth revealed that PJT was similarly effective in both maturity groups, in most outcome measures except for COD speed (in favour of pre-PHV). PJT induces similar physical fitness and sport-specific performance benefits in males and females, with a minimal exercise dosage of 4 weeks (8 intervention sessions), and 92 weekly jumps. Results of this meta-analysis are based on low study heterogeneity, and low to very low certainty of evidence (GRADE analysis) for all outcomes. Conclusion: Compared to control participants, PJT resulted in improved maximal dynamic strength, linear sprint speed, horizontal jump performance, reactive strength index, and sport-specific performance (i.e., soccer ball kicking and dribbling velocity). These effects seem to occur independently of the maturity status, as both pre-PHV and post-PHV participants achieved similar improvements after PJT interventions for most outcomes. However, several methodological issues (e.g., low sample sizes and the pooling of maturity categories) preclude the attainment of more robust recommendations at the current time. To address this issue, consistency in maturity status reporting strategies must be improved in future studies with the general youth population and youth athletes. © 2023, The Author(s).