Logotipo del repositorio
  • Español
  • English
  • Iniciar sesión
    Ayuda

    Instrucciones:

    El Repositorio Institucional Académico (RIA) de la Universidad Andrés Bello, es un recurso de acceso abierto. No obstante, y de acuerdo con la ley chilena vigente sobre propiedad intelectual, mantiene en acceso restringido diversos documentos, los cuales sólo pueden ser consultados por la comunidad universitaria registrada. Para poder acceder a éstos, verificar el tipo de usuario y método de acceso, siguiendo las instrucciones que se detallan a continuación:

    • Si eres investigador, docente o funcionario con correo @unab.cl, ingresa utilizando tu usuario de computador o intranet (nombre de usuario sin incluir @unab.cl) y clave.
    • Si eres alumno, profesor adjunto o exalumno con correo @uandresbello.edu, debes registrarte primero, pinchando donde dice Nuevo usuario. Una vez registrado y obtenida el alta, ingresa con el correo electrónico institucional y la clave elegida. El registro se debe realizar utilizando la cuenta de correo institucional, no serán válidas cuentas gmail, hotmail o cualquier otro proveedor.
    • Si eres usuario externo, contactar directamente a repositorio@unab.cl
    o
    ¿Nuevo Usuario? Pulse aquí para registrarse¿Has olvidado tu contraseña?
  • Comunidades
  • Todo RIA
  • Contacto
  • Procedimientos de publicaciónDerecho de autorPolíticas del Repositorio
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Greggio, L."

Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
  • No hay miniatura disponible
    Ítem
    PESSTO: Survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects
    (EDP Sciences, 2015-07) Smartt, S.J.; Valenti, S.; Fraser, M.; Inserra, C.; Young, D.R.; Sullivan, M.; Pastorello, A.; Benetti, S.; Gal-Yam, A.; Knapic, C.; Molinaro, M.; Smareglia, R.; Smith, K.W.; Taubenberger, S.; Yaron, O.; Anderson, J.P.; Ashall, C.; Balland, C.; Baltay, C.; Barbarino, C.; Bauer, F.E.; Baumont, S.; Bersier, D.; Blagorodnova, N.; Bongard, S.; Botticella, M.T.; Bufano, F.; Bulla, M.; Cappellaro, E.; Campbell, H.; Cellier-Holzem, F.; Chen, T.-W.; Childress, M.J.; Clocchiatti, A.; Contreras, C.; Dall'Ora, M.; Danziger, J.; De Jaeger, T.; De Cia, A.; Della Valle, M.; Dennefeld, M.; Elias-Rosa, N.; Elman, N.; Feindt, U.; Fleury, M.; Gall, E.; Gonzalez-Gaitan, S.; Galbany, L.; Morales Garoffolo, A.; Greggio, L.; Guillou, L.L.; Hachinger, S.; Hadjiyska, E.; Hage, P.E.; Hillebrandt, W.; Hodgkin, S.; Hsiao, E.Y.; James, P.A.; Jerkstrand, A.; Kangas, T.; Kankare, E.; Kotak, R.; Kromer, M.; Kuncarayakti, H.; Leloudas, G.; Lundqvist, P.; Lyman, J.D.; Hook, I.M.; Maguire, K.; Manulis, I.; Margheim, S.J.; Mattila, S.; Maund, J.R.; Mazzali, P.A.; McCrum, M.; McKinnon, R.; Moreno-Raya, M.E.; Nicholl, M.; Nugent, P.; Pain, R.; Pignata, G.; Phillips, M.M.; Polshaw, J.; Pumo, M.; Rabinowitz, D.; Reilly, E.; Romero-Cañizales, C.; Scalzo, R.; Schmidt, B.; Schulze, S.; Sim, S.; Sollerman, J.; Taddia, F.; Tartaglia, L.; Terreran, G.; Tomasella, L.; Turatto, M.; Walker, E.; Walton, N.A.; Wyrzykowski, L.; Yuan, F.; Zampieri, L.
    Context. The Public European Southern Observatory Spectroscopic Survey of Transient Objects (PESSTO) began as a public spectroscopic survey in April 2012. PESSTO classifies transients from publicly available sources and wide-field surveys, and selects science targets for detailed spectroscopic and photometric follow-up. PESSTO runs for nine months of the year, January - April and August - December inclusive, and typically has allocations of 10 nights per month. Aims. We describe the data reduction strategy and data products that are publicly available through the ESO archive as the Spectroscopic Survey data release 1 (SSDR1). Methods. PESSTO uses the New Technology Telescope with the instruments EFOSC2 and SOFI to provide optical and NIR spectroscopy and imaging. We target supernovae and optical transients brighter than 20.5m for classification. Science targets are selected for follow-up based on the PESSTO science goal of extending knowledge of the extremes of the supernova population. We use standard EFOSC2 set-ups providing spectra with resolutions of 13-18 Å between 3345-9995 Å. A subset of the brighter science targets are selected for SOFI spectroscopy with the blue and red grisms (0.935-2.53 μm and resolutions 23-33 Å) and imaging with broadband JHKs filters. Results. This first data release (SSDR1) contains flux calibrated spectra from the first year (April 2012-2013). A total of 221 confirmed supernovae were classified, and we released calibrated optical spectra and classifications publicly within 24 h of the data being taken (via WISeREP). The data in SSDR1 replace those released spectra. They have more reliable and quantifiable flux calibrations, correction for telluric absorption, and are made available in standard ESO Phase 3 formats. We estimate the absolute accuracy of the flux calibrations for EFOSC2 across the whole survey in SSDR1 to be typically ∼15%, although a number of spectra will have less reliable absolute flux calibration because of weather and slit losses. Acquisition images for each spectrum are available which, in principle, can allow the user to refine the absolute flux calibration. The standard NIR reduction process does not produce high accuracy absolute spectrophotometry but synthetic photometry with accompanying JHKs imaging can improve this. Whenever possible, reduced SOFI images are provided to allow this. Conclusions. Future data releases will focus on improving the automated flux calibration of the data products. The rapid turnaround between discovery and classification and access to reliable pipeline processed data products has allowed early science papers in the first few months of the survey. © ESO, 2015.
  • Cargando...
    Miniatura
    Ítem
    Supernova rates from the SUDARE VST-OmegaCAM search: I. Rates per unit volume
    (EDP Sciences, 2015-12) Cappellaro, E.; Botticella, M.; Pignata, G.; Grado, A.; Greggio, L.; Limatola, L.; Vaccari, M.; Baruffolo, A.; Benetti, S.; Bufano, F.; Capaccioli, M.; Cascone, E.
    Aims.We describe the observing strategy, data reduction tools, and early results of a supernova (SN) search project, named SUDARE, conducted with the ESO VST telescope, which is aimed at measuring the rate of the different types of SNe in the redshift range 0.2 < z < 0:8. Methods. The search was performed in two of the best studied extragalactic fields, CDFS and COSMOS, for which a wealth of ancillary data are available in the literature or in public archives. We developed a pipeline for the data reduction and rapid identification of transients. As a result of the frequent monitoring of the two selected fields, we obtained light curve and colour information for the transients sources that were used to select and classify SNe by means of an especially developed tool. To accurately characterise the surveyed stellar population, we exploit public data and our own observations to measure the galaxy photometric redshifts and rest frame colours. Results. We obtained a final sample of 117 SNe, most of which are SN Ia (57%) with the remaining ones being core collapse events, of which 44% are type II, 22% type IIn and 34% type Ib/c. To link the transients, we built a catalogue of ∼1.3 × 105 galaxies in the redshift range 0 < z ≤ 1; with a limiting magnitude KAB= 23.5 mag. We measured the SN rate per unit volume for SN Ia and core collapse SNe in different bins of redshifts. The values are consistent with other measurements from the literature. Conclusions. The dispersion of the rate measurements for SNe-Ia is comparable to the scatter of the theoretical tracks for single degenerate (SD) and double degenerate (DD) binary systems models, therefore it is not possible to disentangle among the two different progenitor scenarios. However, among the three tested models (SD and the two flavours of DD that either have a steep DDC or a wide DDWdelay time distribution), the SD appears to give a better fit across the whole redshift range, whereas the DDC better matches the steep rise up to redshift ∼1.2. The DDW instead appears to be less favoured. Unlike recent claims, the core collapse SN rate is fully consistent with the prediction that is based on recent estimates of star formation history and standard progenitor mass range. © ESO 2015.