Examinando por Autor "Gutiérrez, Margarita"
Mostrando 1 - 4 de 4
Resultados por página
Opciones de ordenación
Ítem Comprehensive analysis of crystal structure, spectroscopic properties, quantum chemical insights, and molecular docking studies of two pyrazolopyridine compounds: potential anticancer agents(Royal Society of Chemistry, 2023-11) Polo-Cuadrado, Efraín; López-Cuellar, Lorena; Acosta-Quiroga, Karen; Rojas-Peña, Cristian; Brito, Iván; Cisterna, Jonathan; Trilleras, Jorge; Alderete, Joel B.; Duarte, Yorley; Gutiérrez, MargaritaIn this study, two pyrazolo[3,4-b]pyridine derivatives (4a and 4b) were grown using a slow evaporation solution growth technique and characterized by FT-IR, HRMS, 1H/13C NMR spectroscopy, and X-ray crystallography. The 4a and 4b structures crystallized in monoclinic and triclinic systems with space groups P21/n and P1̄, respectively. Theoretical calculations were performed at the DFT/B3LYP level for the optimized geometries. The results were in excellent agreement with the experimental data (spectroscopic and XRD). This investigation encompasses molecular modeling studies including Hirshfeld surface analysis, energy framework calculations, and frontier molecular orbital analysis. Intermolecular interactions within the crystal structures of the compounds were explored through Hirshfeld surface analysis, which revealed the notable presence of hydrogen bonding and hydrophobic interactions. This insight provides valuable information on the structural stability and potential solubility characteristics of these compounds. The research was extended to docking analysis with eight distinct kinases (BRAF, HER2, CSF1R, MEK2, PDGFRA, JAK, AKT1, and AKT2). The results of this analysis demonstrate that both 4a and 4b interact effectively with the kinase-binding sites through a combination of hydrophobic interactions and hydrogen bonding. Compound 4a had the best affinity for proteins; this is related to the fact that the compound is not rigid and has a small size, allowing it to sit well at any binding site. This study contributes to the advancement of kinase inhibitor research and offers potential avenues for the development of new therapeutic agents for cancer treatment. © 2023 The Royal Society of Chemistry.Ítem Multicomponent synthesis and photophysical study of novel α,β-unsaturated carbonyl depsipeptides and peptoids(Frontiers Media SA, 2023) González, Ricelia; Murillo-López, Juliana; Rabanal-León, Walter; Prent-Peñaloza, Luis; Concepción, Odette; Olivares, Pedro; Duarte, Yorley; de la Torre, Alexander F.; Gutiérrez, Margarita; Caballero, JulioMulticomponent reactions were performed to develop novel α,β-unsaturated carbonyl depsipeptides and peptoids incorporating various chromophores such as cinnamic, coumarin, and quinolines. Thus, through the Passerini and Ugi multicomponent reactions (P-3CR and U-4CR), we obtained thirteen depsipeptides and peptoids in moderate to high yield following the established protocol and fundamentally varying the electron-rich carboxylic acid as reactants. UV/Vis spectroscopy was utilized to study the photophysical properties of the newly synthesized compounds. Differences between the carbonyl-substituted chromophores cause differences in electron delocalization that can be captured in the spectra. The near UV regions of all the compounds exhibited strong absorption bands. Compounds P2, P5, U2, U5, and U7 displayed absorption bands in the range of 250–350 nm, absorbing radiation in this broad region of the electromagnetic spectrum. A photostability study for U5 showed that its molecular structure does not change after exposure to UV radiation. Fluorescence analysis showed an incipient emission of U5, while U6 showed blue fluorescence under UV radiation. The photophysical properties and electronic structure were also determined by TD-DFT theoretical study. Copyright © 2023 González, Murillo-López, Rabanal-León, Prent-Peñaloza, Concepción, Olivares, Duarte, de la Torre, Gutiérrez and Caballero.Ítem Nano-Detoxification of Organophosphate Agents by PAMAM Derivatives(Sociedade Brasileira de Química, 2015) Durán-Lara, Esteban F.; Ávila-Salas, Fabian; Galaz, Sebastian; John, Amalraj; Maricán, Adolfo; Gutiérrez, Margarita; Nachtigall, Fabiane M.; Gonzalez-Nilo, Fernando D.; Santos, Leonardo S.For the first time, the adsorption of pesticides such as azinphos-methyl and methamidophos by polyamidoamine (PAMAM) derivatives was studied. Amine groups of PAMAM (G4 and G5) were functionalized with different biomolecules such as folic acid, coumarine, arginine, lysine, and asparagine. Subsequently, the synthesized compounds were used to trap organophosphates (OP), and its affinity to do so was measured by high-performance liquid chromatography (HPLC). The obtained experimental data was compared with the interaction energy values obtained through a nanoinformatic methodology, by using conformational sampling through Euler angles and semi‑empirical quantum mechanical calculations. Both, the experimental and the in silico methodology can be employed to screen with high accuracy the molecular interactions between OP agents and the functionalized PAMAM. Furthermore, affinity results by HPLC and molecular dynamics were supported by in vitro enzyme acetylcholinesterase activity assays.Ítem Phenolic Profile and Cholinesterase Inhibitory Properties of Three Chilean Altiplano Plants: Clinopodium gilliesii (Benth.) Kuntze [Lamiaceae], Mutisia acuminata Ruiz & Pav. var. hirsuta (Meyen) Cabrera, and Tagetes multiflora (Kunth) [Asteraceae](MDPI, 2023-02) Fernández-Galleguillos, Carlos; Jiménez-Aspee, Felipe; Mieres-Castro, Daniel; Rodríguez-Núñez, Yeray A.; Gutiérrez, Margarita; Guzmán, Luis; Echeverría, Javier; Sandoval-Yañez, Claudia; Forero-Doria, OscarThis research aimed to identify the phenolic profile and composition of the aerial parts of three native species used in traditional medicine in the Andean Altiplano of northern Chile: Clinopodium gilliesii (Benth.) Kuntze [Lamiaceae] (commonly known as Muña-Muña), Mutisia acuminata Ruiz & Pav. var. hirsuta (Meyen) Cabrera [Asteraceae] (commonly known as Chinchircoma), and Tagetes multiflora (Kunth), [Asteraceae] (commonly known as Gracilis), as well as to evaluate their potential inhibitory effects against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Polyphenolic enriched-extracts (PEEs) of the species were prepared and analyzed and the main components were quantified using HPLC-DAD. In total, 30 phenolic compounds were identified and quantified in all species, including simple phenolics, hydroxycinnamic acids, flavan-3-ols (monomers and polymers), flavanones, and flavonols. In addition, other main phenolics from the extracts were tentatively identified by ESI-MS-MS high-resolution analysis. T. multiflora extract showed the greatest anti-AChE and BChE activity in comparison with C. gilliesii and M. acuminata extracts, being the anti-AChE and BChE activity weak in all extracts in comparison to galantamine control. To comprise to better understand the interactions between cholinesterase enzymes and the main phenolics identified in T. multiflora, molecular docking analysis was conducted. © 2023 by the authors.